Skip to main content
Log in

Prescribing curvature problem of Bakry-Émery Ricci tensor

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of deforming a metric in its conformal class on a closed manifold, such that the k-curvature defined by the Bakry-Émery Ricci tensor is a constant. We show its solvability on the manifold, provided that the initial Bakry-Émery Ricci tensor belongs to a negative cone. Moveover, the Monge-Amp`ere type equation with respect to the Bakry-Émery Ricci tensor is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ané C, Blachère S, Chafal D, et al. Sur les Inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Paris: Soc Math de France, 2000

    MATH  Google Scholar 

  2. Bakry D, Émery M. Diffusions Hypercontractives in Séminaire de probabilités. In: Lecture Notes in Mathematics, vol. 1123. New York: Springer, 1985, 177–206

    Google Scholar 

  3. Bakry D, Qian Z. Volume comparison theorems without Jacobi fields in current trends in potential theory. Theta Ser Adv Math, 2005, 4: 115–122

    MathSciNet  Google Scholar 

  4. Brooks R. A construction of metrics of negative Ricci curvature. J Differ Geom, 1989, 29: 85–94

    MathSciNet  MATH  Google Scholar 

  5. Caffarelli L A, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear secondorder elliptic equations, 3: Functions of eigenvalues of the Hessians. Acta Math, 1985, 155: 261–301

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang A, Gursky M, Yang P. An equation of Monge-Ampére type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann Math, 2002, 155: 709–787

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans L C. Classical solutions of fully nonlinear convex second-order elliptic equations. Comm Pure Appl Math, 1982, 35: 333–363

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao L Z, Yau S T. The existence of negatively Ricci curved metrics on three-manifolds. Invent Math, 1986, 85: 637–652

    Article  MathSciNet  MATH  Google Scholar 

  9. Gursky M, Viaclovsky J. Fully nonlinear equations on Riemannian manifolds with negative curvature. Indiana Univ Math J, 2003, 52: 399–419

    Article  MathSciNet  MATH  Google Scholar 

  10. Krylov N V. Boundediv inhomogeneour elliptic andparubolic equations in a domain. Izv Akad Nauk SSSR, 1983, 47: 75–108

    Google Scholar 

  11. Ledoux M. The geometry of Markov diffusion generators. Ann Fac Sci Toulouse Math, 2000, 9: 305–366

    Article  MathSciNet  MATH  Google Scholar 

  12. Li J Y, Sheng W M. Deforming metrics with negative curvature by a fully nonlinear flow. Calc Var PDE, 2005, 23: 33–50

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin M, Trudinger N S. On some inequalities for elementary symmetric functions. Bull Austral Math. 1994, 50: 317–326

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Y Y. Some existence results of fully nonlinear elliptic equations of Monge-Ampere type. Comm Pure Appl Math, 1990, 43: 233–271

    Article  MathSciNet  MATH  Google Scholar 

  15. Lohkamp J. Metrics of negative Ricci curvature. Ann Math, 1994, 140: 655–683

    Article  MathSciNet  MATH  Google Scholar 

  16. Lott J. Some Geometric properties of the Barkry-Émery-Ricci tensor. Comment Math Helv, 2003, 78: 865–883

    Article  MathSciNet  MATH  Google Scholar 

  17. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169: 903–991

    Article  MathSciNet  MATH  Google Scholar 

  18. Perelman G. The entropy formula for the Ricci flow and its geometric applications. Arixv: math.DG/0211159, 2002

    Google Scholar 

  19. Sturm K T. On the geometry of metric measure spaces, I. II. Acta Math, 2006, 196: 65–177

    Article  MathSciNet  MATH  Google Scholar 

  20. Su H Y, Zhang H C. Rigidity of manifolds with Barky-Emery Ricci curvature bounded below. Geom Dedicata, 2012, 1: 321–331

    Article  MathSciNet  Google Scholar 

  21. Trudinger N S, Wang X J. Hessian measures, II. Ann Math, 1999, 150: 579–604

    Article  MathSciNet  MATH  Google Scholar 

  22. Urbas J. An expansion of convex hypersurfaces. J Differ Geom, 1991, 33: 91–125

    MathSciNet  MATH  Google Scholar 

  23. Wei G, Wylie W. Comparison geometry for the Barkry-Émery-Ricci tensor. J Differ Geom, 2009, 83: 337–405

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiXia Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L. Prescribing curvature problem of Bakry-Émery Ricci tensor. Sci. China Math. 56, 1935–1944 (2013). https://doi.org/10.1007/s11425-013-4595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4595-z

Keywords

MSC(2010)

Navigation