Skip to main content
Log in

On convergence of the inexact Rayleigh quotient iteration with the Lanczos method used for solving linear systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξ k , of the linear system obtained by the Lanczos method at outer iteration k+1. Based on them, we make a refined analysis and establish new local convergence results. It is proved that (i) the inexact RQI with Lanczos converges quadratically provided that ξ k ξ with a constant ξ ⩾ 1 and (ii) the method converges linearly provided that ξ k is bounded by some multiple of \(\tfrac{1} {{\left\| {r_k } \right\|}} \) with ‖r k ‖ the residual norm of the approximate eigenpair at outer iteration k. The results are fundamentally different from the existing ones that always require ξ k < 1, and they have implications on effective implementations of the method. Based on the new theory, we can design practical criteria to control ξ k to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory and demonstrate that the inexact RQI with Lanczos is competitive to the inexact RQI with MINRES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berns-Müller J, Graham I G, Spence A. Inexact inverse iteration for symmetric matrices. Linear Algebra Appl, 2006, 416: 389–413

    Article  MathSciNet  MATH  Google Scholar 

  2. Berns-Müller J, Spence A. Inexact inverse iteration with variable shift for nonsymmetric generalized eigenvalue problems. SIAM J Matrix Anal Appl, 2006, 28: 1069–1082

    Article  MathSciNet  MATH  Google Scholar 

  3. Daniel G W, Gragg W B, Kaufmann L, et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math Comput, 1976, 30: 772–795

    MATH  Google Scholar 

  4. Duff I S, Grimes R G, Lewis J G. User’s guide for the Harwell-Boeing sparse matrix collection (Release 1). Technical Report, RAL-92-086. Rutherford Appleton Laboratory, UK, 1992. Data available at http://math.nist.gov/MarketMatrix

    Google Scholar 

  5. Dul F A. MINRES and MINERR are better than SYMMLQ in eigenpair computations. SIAM J Sci Comput, 1998, 19: 1767–1782

    Article  MathSciNet  MATH  Google Scholar 

  6. Freitag M A, Spence A. Convergence of inexact inverse iteration with application to preconditioned iterative solves. BIT, 2007, 47: 27–44

    Article  MathSciNet  MATH  Google Scholar 

  7. Freitag M A, Spence A. Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electron Trans Numer Anal, 2007, 28: 40–64

    MathSciNet  MATH  Google Scholar 

  8. Freitag M A, Spence A. Rayleigh quotient iteration and simplified Jacobi-Davidson method with preconditioned iterative solves. Linear Algebra Appl, 2008, 428: 2049–2060

    Article  MathSciNet  MATH  Google Scholar 

  9. Freitag M A, Spence A. A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA J Numer Anal, 2008, 28: 522–551

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub G H, van Loan C F. Matrix Computations, 3rd Ed. Baltimore: The John Hopkins Univ Press, 1996

    MATH  Google Scholar 

  11. Hochestenbach M E, Notay Y. Controlling inner iterations in the Jacobi-Davidson method. SIAM J Matrix Anal Appl, 2009, 31: 460–477

    Article  MathSciNet  Google Scholar 

  12. Hochstenbach M E, Sleijpen G L G. Two-sided and alternating Jacobi-Davidson. Linear Algebra Appl, 2003, 358: 145–172

    Article  MathSciNet  MATH  Google Scholar 

  13. Jia Z X. On convergence of the inexact Rayleigh quotient iteration with MINRES. J Comput Appl Math, 2012, 236: 4276–4295

    Article  MathSciNet  MATH  Google Scholar 

  14. Notay Y. Convergence analysis of inexact Rayleigh quotient iteration. SIAM J Matrix Anal Appl, 2003, 24: 627–644

    Article  MathSciNet  MATH  Google Scholar 

  15. Paige C C, Parlett B N, van der Vorst H A. Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer Linear Algebra Appl, 1995, 2: 115–134

    Article  MathSciNet  MATH  Google Scholar 

  16. Paige C C, Saunders M A. Solution of sparse indefinite systems of linear equations. SIAM J Numer Anal, 1975, 12: 617–629

    Article  MathSciNet  MATH  Google Scholar 

  17. Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia, PA: SIAM, 1998

    Book  MATH  Google Scholar 

  18. Saad Y. Iterative Methods of Large Sparse Linear Systems, 2nd Edition. Philadelphia, PA: SIAM, 2003

    Book  Google Scholar 

  19. Simoncini V, Eldén L. Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT, 2002, 42: 159–182

    Article  MathSciNet  MATH  Google Scholar 

  20. Smit P, Paardekooper H H C. The effects of inexact solvers in algorithms for symmetric eigenvalue problems. Linear Algebra Appl, 1999, 287: 337–357

    Article  MathSciNet  MATH  Google Scholar 

  21. Stathopoulos A, Saad Y. Restarting techniques for the (Jacobi-)Davidson eigenvalue methods. Electr Trans Numer Anal, 1998, 7: 163–181

    MathSciNet  MATH  Google Scholar 

  22. Stewart G W. Matrix Algorithms II: Eigensystems. Philadelphia, PA: SIAM, 2001

    Book  MATH  Google Scholar 

  23. van den Eshof J. The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems. Numer Linear Algebra Appl, 2002, 9: 163–179

    Article  MathSciNet  MATH  Google Scholar 

  24. van der Vorst H A. Computational Methods for Large Eigenvalue Problems. In: Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, vol. VIII. Amsterdam: North-Holland-Elsevier, 2002, 3–179

    Google Scholar 

  25. Xue F, Elman H. Convergence analysis of iterative solvers in inexact Rayleigh quotient iteration. SIAM J Matrix Anal Appl, 2009, 31: 877–899.

    Article  MathSciNet  Google Scholar 

  26. Xue F, Szyld D B. Efficient preconditioned inner solves for inexact Rayleigh quotient iteration and their connections to the single-vector Jacobi-Davidson method. SIAM J Matrix Anal Appl, 2011, 32: 993–1018

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongXiao Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z. On convergence of the inexact Rayleigh quotient iteration with the Lanczos method used for solving linear systems. Sci. China Math. 56, 2145–2160 (2013). https://doi.org/10.1007/s11425-013-4571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4571-7

Keywords

MSC(2010)

Navigation