Skip to main content
Log in

Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses the relation between the long-time dynamics of solutions of the two-dimensional (2D) incompressible non-Newtonian fluid system and the 2D Navier-Stokes system. We first show that the solutions of the non-Newtonian fluid system converge to the solutions of the Navier-Stokes system in the energy norm. Then we establish that the global attractors \(\{ \mathcal{A}_ \in ^H \} _{0 < \in \leqslant 1} \) of the non-Newtonian fluid system converge to the global attractor A H0 of the Navier-Stokes system as ε → 0. We also construct the minimal limit A Hmin of the global attractors \(\{ \mathcal{A}_ \in ^H \} _{0 < \in \leqslant 1} \) as ε → 0 and prove that A Hmin is a strictly invariant and connected set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A. Sobolev Spaces. New York: Academic Press, 1975

    MATH  Google Scholar 

  2. Bellout H, Bloom F, Nečas J. Phenomenological behavior of multipolar viscous fluids. Quart Appl Math, 1992, 50: 559–583

    MathSciNet  MATH  Google Scholar 

  3. Bellout H, Bloom F, Nečas J. Young measure-valued solutions for non-Newtonian incompressible viscous fluids. Comm Partial Differ Equations, 1994, 19: 1763–1803

    Article  MATH  Google Scholar 

  4. Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions. Nonlinear Anal, 2001, 44: 281–309

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor. Nonlinear Anal, 2001, 43: 743–766

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao C, Holm D, Titi E S. On the Clark-α model of turbulence: global regularity and long-time dynamics. J Turbulence, 2005, 6: 1–11

    Article  MathSciNet  Google Scholar 

  7. Cao Y, Lunasin E M, Titi E S. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Comm Math Sci, 2006, 4: 823–848

    MathSciNet  MATH  Google Scholar 

  8. Caraballo T, Łukaszewicz G, Real J. Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains. C R Math Acad Sci Paris, 2006, 342: 263–268

    Article  MathSciNet  MATH  Google Scholar 

  9. Caraballo T, Real J. Attractors for 2D-Navier-Stokes models with delays. J Differential Equations, 2004, 205: 271–297

    Article  MathSciNet  MATH  Google Scholar 

  10. Chepyzhov V V, Titi E S, Vishik M I. On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system. Dicret Cont Dyn Syst, 2007 17: 481–500

    MathSciNet  MATH  Google Scholar 

  11. Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI: Amer Math Soc, 2002

    MATH  Google Scholar 

  12. Cheskidov A, Holm D D, Olson E, et al. On Leray-α model of turbulence. Proc R Soc London Ser A, 2005, 461: 629–649

    Article  MathSciNet  MATH  Google Scholar 

  13. Foias C, Holm D D, Titi E S. The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J Dyn Differ Equations, 2002, 14: 1–35

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo B, Zhu P. Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids. J Differential Equations, 2002, 178: 281–297

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo C, Guo B. The convergence of non-Newtonian fluids to Navier-Stokes equations. J Math Anal Appl, 2009, 357: 468–478

    Article  MathSciNet  MATH  Google Scholar 

  16. Ilyin A A, Lunasin E M, Titi E S. A modified-Leray-α subgrid scale model of turbulence. Nonlinearity, 2006, 19: 879–897

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju N. The H 1-compact global attractor for the solutions to the Navier-Stokes equations in 2D unbounded domains. Nonlinearity, 2000, 13: 1227–1238

    Article  MathSciNet  MATH  Google Scholar 

  18. Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. New York: Gordon and Breach, 1969

    MATH  Google Scholar 

  19. Málek J, Nečas J, Rokyta M, et al. Weak and Measure-valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996

    Google Scholar 

  20. Pokorný M. Cauchy problem for the non-Newtonian viscous incompressible fluids. Appl Math, 1996, 41: 169–201

    MathSciNet  MATH  Google Scholar 

  21. Robinson J C. Infinite Dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001

    Book  Google Scholar 

  22. Rosa R. The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal, 1998, 32: 71–85

    Article  MathSciNet  MATH  Google Scholar 

  23. Sell G R, You Y. Dynamics of Evolutionary Equations. New York: Springer, 2002

    MATH  Google Scholar 

  24. Temam T. Navier-Stokes Equations (Theory and Numerical Analysis). Amsterdam: North-Holland, 1984

    MATH  Google Scholar 

  25. Temam T. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. Berlin: Springer, 1997

    MATH  Google Scholar 

  26. Vishik M I, Titi E S, Chepyzhov V V. On convergence of trajectory attractors of the 3D Navier-Stokes-α model as α approaches 0. Sbornik Math, 2007, 198: 1703–1736

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao C, Li Y. H 2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains. Nonlinear Anal, 2004, 7: 1091–1103

    Article  Google Scholar 

  28. Zhao C, Li Y. A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains. Nonlinear Anal, 2005, 60: 475–483

    MathSciNet  MATH  Google Scholar 

  29. Zhao C, Li Y, Zhou S. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247: 2331–2363

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao C, Zhou S. L 2-compact uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phys, 2007, 48: 1–12

    MathSciNet  Google Scholar 

  31. Zhao C, Zhou S. Pullback attractors for nonautonomous incompressible non-Newtonian fluid. J Differential Equations, 2007, 238: 394–425

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao C, Zhou S. Pullback trajectory attractors for evolution equations and application to 3D incompressible non-Newtonian fluid. Nonlinearity, 2008, 21: 1691–1717

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao C, Zhou S, Li Y. Existence and regularity of pullback attractor for an incompressible non-Newtonian fluid with delays. Quart Appl Math, 2009, 61: 503–540

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiDi Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Duan, J. Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system. Sci. China Math. 56, 253–265 (2013). https://doi.org/10.1007/s11425-012-4538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4538-0

Keywords

MSC(2010)

Navigation