Skip to main content
Log in

Invariant G2V algorithm for computing SAGBI-Gröbner bases

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Faugère and Rahmany have presented the invariant F5 algorithm to compute SAGBI-Gröbner bases of ideals of invariant rings. This algorithm has an incremental structure, and it is based on the matrix version of F5 algorithm to use F5 criterion to remove a part of useless reductions. Although this algorithm is more efficient than the Buchberger-like algorithm, however it does not use all the existing criteria (for an incremental structure) to detect superfluous reductions. In this paper, we consider a new algorithm, namely, invariant G 2 V algorithm, to compute SAGBI-Gröbner bases of ideals of invariant rings using more criteria. This algorithm has a new structure and it is based on the G2V algorithm; a variant of the F5 algorithm to compute Gröbner bases. We have implemented our new algorithm in Maple, and we give experimental comparison, via some examples, of performance of this algorithm with the invariant F5 algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams W W, Hosten S, Loustaunau P, et al. Sagbi and sagbi Gröbner bases over principal ideal domains. J Symb Comp, 1999, 27: 31–47

    Article  MathSciNet  MATH  Google Scholar 

  2. Ars G, Hashemi A. Extended F5 criteria. J Symb Comp, 2010, 45: 1330–1340

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker T, Weispfenning V. Gröbner Bases, A Computational Approach to Commutative Algebra. New York: Springer-Verlag, 1993

    MATH  Google Scholar 

  4. Buchberger B. Ein Algorithms zum Auffinden der Basiselemente des Restklassenrings nach einem nuildimensionalen Polynomideal. PhD Thesis, Universität Innsbruck, 1965

  5. Buchberger B. A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In: Symbolic and Algebraic Computation, EUROSAM’79, Intern Sympos, Marseille, 1979, Lecture Notes in Compute Sci, vol. 72. Berlin: Springer, 1979, 3–21

    Chapter  Google Scholar 

  6. Cox D, Little J, O’shea D. Ideals, Varieties, and Algorithms, 3nd Edition. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 2007

    Book  MATH  Google Scholar 

  7. Eder C, Perry J. F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases. J Symb Comp, 2010, 45: 1442–1458.

    Article  MathSciNet  MATH  Google Scholar 

  8. Faugère J C. A new efficient algorithm for computing Gröbner bases (F4). J Pure Appl Algebra, 1994, 139: 61–88

    Article  Google Scholar 

  9. Faugère J C. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: ISSAC’02. New York: ACM Press, 2002, 75–83

    Google Scholar 

  10. Faugère J C, Rahmany S. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In: ISSAC’09. New York: ACM Press, 2009, 151–158

    Google Scholar 

  11. Gao S, Guan Y, Volny IV F. A new incremental algorithm for computing Gröbner bases. In: ISSAC’10. New York: ACM Press, 2010, 13–19

    Google Scholar 

  12. Gao S, Volny IV F, Wang M. A new algorithm for computing Gröbner bases. Preprint, 2011, http://www.math.clemson.edu/faculty/Gao/papers/gvw.pdf

  13. Gebauer R, Möller H. On an installation of Buchberger’s algorithm. J Symb Comp, 1988, 6: 275–286

    Article  MATH  Google Scholar 

  14. Göbel M. A constructive description of SAGBI bases for polynomial invariants of permutation groups. J Symb Comp, 1999, 26: 261–272

    Article  Google Scholar 

  15. Hashemi A, M.-Alizadeh B. Applying IsRewritten criterion on Buchberger algorithm. J Theor Comp Sci, 2011, 412: 4592–4603

    Article  MathSciNet  MATH  Google Scholar 

  16. Hochster M, Roberts J L. Ring of invariants of reductive groups acting on regular rings are cohen-macaulay. Adv Math, 1974, 13: 115–175

    Article  MathSciNet  MATH  Google Scholar 

  17. Kapur D, Madlener K. A completion procedure for computing a canonical basis for a K-subalgebra. In: Kaltofen E, Watt S, eds. Computers and Mathematics. Berlin: Springer-Verlag, 1989, 1–11

    Chapter  Google Scholar 

  18. Kemper G. An algorithm to calculate optimal homogeneous systems of parameters. J Symb Comp, 1999, 27: 171–184

    Article  MathSciNet  MATH  Google Scholar 

  19. Kemper G. Calculating invariant rings of finite groups over arbitrary field. J Symb Comp, 1996, 21: 351–366

    Article  MathSciNet  MATH  Google Scholar 

  20. Kemper G. Computational invariant theory. The Curves Seminar at Queen, 1998, XII: 5–26

    MathSciNet  Google Scholar 

  21. Kemper G. Computational Invariant Theory. New York: Springer-Verlag, 2002

    MATH  Google Scholar 

  22. Kemper G, Steel A. Some algorithms in invariant theory of finite groups. In: Computational Methods for Representations of Groups and Algebras, Euroconference in Essen, April 1–5, 1997, Progress in Mathematics, 1999, 173: 267–285

    MathSciNet  Google Scholar 

  23. Kuroda M. The finiteness of the SAGBI basis for certain invariant rings. Osaka J Math, 2002, 39: 665–680

    MathSciNet  MATH  Google Scholar 

  24. Lazard D. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: Lecture Notes in Comput Science, vol. 162. Berlin: Springer, 1983, 146–156

    Google Scholar 

  25. Macaulay F S. Some formulae in elimination. Proc London Math Soc, 1902, 35: 3–27

    Article  MathSciNet  Google Scholar 

  26. Miller J L. Analogues of Gröbner bases in polynomial rings over a ring. J Symb Comp, 1996, 21: 139–153

    Article  MATH  Google Scholar 

  27. Miller J L. Miller J L. Effective algorithms for intrinsically computing SAGBI-Grbner bases in a polynomial ring over a field. In: London Math Soc Lecture Note Ser, 251. Cambridge: Cambridge University Press, 1998, 421–433

    Google Scholar 

  28. Öfverbeck H. Constructive methods for SAGBI and SAGBI-Gröbner bases. PhD Thesis, Lund University, 2006

  29. Ollivier F. Canonical bases: relations with standard bases, finiteness conditions and application to tame automorphisms. MEGA0, Progress in Mathematics, 94. Boston: Birkhäuser, 1991, 379–400

    Google Scholar 

  30. Rahmany S. Utilisation des bases de Gröbner SAGBI pour la résolution des systèmes polynômiaux invariants par symétries. PhD Thesis, Université Paris 6, 2009

  31. Robbiano L, Sweedler M. Sub algebra bases. Commun Algebra, 1990, 61–87

  32. Sun Y, Wang D. A generalized criterion for signature related Gröbner basis algorithms. In: ISSAC’11. New York: ACM Press, 2011, 337–344

    Google Scholar 

  33. Sun Y, Wang D. The F5 algorithm in Buchberger’s style. J Syst Sci Comp, 2011, 24: 1218–1231

    Article  Google Scholar 

  34. Sweedler M. Ideal bases and valuation rings. Preprint, 1988

  35. Thiéry N M. Computing minimal generating sets of invariant rings of permutation groups with SAGBI-Gröbner basis. Intern Conf DMCCG, Discrete Model-Combinatorics. Computation and Geometry, 2002, 84–89

  36. Thiéry N M, Thomassé S. Convex cones and SAGBI bases of permutation invariants in invariant theory in all characteristic. In: CRM Proceedings and Lecture Notes, vol. 35. Providence, RI: Amer Math Soc, 2004, 259–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, A., M.-Alizadeh, B. & Riahi, M. Invariant G2V algorithm for computing SAGBI-Gröbner bases. Sci. China Math. 56, 1781–1794 (2013). https://doi.org/10.1007/s11425-012-4506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4506-8

Keywords

MSC(2010)

Navigation