Skip to main content

Chebfun and numerical quadrature


Chebfun is a Matlab-based software system that overloads Matlab’s discrete operations for vectors and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun’s fast capabilities for Clenshaw-Curtis and also Gauss-Legendre, -Jacobi, -Hermite, and -Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu and Rokhlin. Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation.

This is a preview of subscription content, access via your institution.


  1. Assheton P. Comparing Chebfun to Adaptive Quadrature Software. MS Thesis, Mathematical Modelling and Scientific Computing, Oxford University, 2008

  2. Berrut J P, Trefethen L N. Barycentric Lagrange interpolation. SIAM Rev, 2004, 46: 501–517

    Article  MathSciNet  MATH  Google Scholar 

  3. Clenshaw C W, Curtis A R. A method for numerical integration on an automatic computer. Numer Math, 1960, 2: 197–205

    Article  MathSciNet  MATH  Google Scholar 

  4. Espelid T O. Doubly adaptive quadrature routines based on Newton-Cotes rules. BIT Numer Math, 2003, 43: 319–337

    Article  MathSciNet  MATH  Google Scholar 

  5. Espelid T O. Extended doubly adaptive quadrature routines. Tech Rep 266. Department of Informatics, University of Bergen

  6. Gentleman W M. Implementing Clenshaw-Curtis quadrature I and II. J ACM, 1972, 15: 337–346

    Article  MathSciNet  MATH  Google Scholar 

  7. Glaser A, Liu X, Rokhlin V. A fast algorithm for the calculation of the roots of special functions. SIAM J Sci Comp, 2007, 29: 1420–1438

    Article  MathSciNet  MATH  Google Scholar 

  8. Golub G H, Welsch J H. Calculation of Gauss quadrature rules. Math Comp, 1969, 23: 221–230

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonnet P. Increasing the reliability of adaptive quadrature using explicit interpolants. ACM Trans Math Softw, 2010, 37: 26:2–26:32

    Article  MathSciNet  Google Scholar 

  10. Gonnet P. Battery test of Chebfun as an integrator., 2010

  11. Hale N, Townsend A. Fast and accurate computation of Gauss-Jacobi nodes and weights. In preparation, 2012

  12. Higham N J. The numerical stability of barycentric Lagrange interpolation. IMA J Numer Anal, 2004, 2: 547–556

    Article  MathSciNet  Google Scholar 

  13. Octave software.

  14. O’Hara H, Smith F J. Error estimation in the Clenshaw-Curtis quadrature formula. Comput J, 1968, 11: 213–219

    MathSciNet  MATH  Google Scholar 

  15. Oldham K B, Spanier J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York-London: Academic Press, 1974

    Google Scholar 

  16. Richardson M. Approximating Divergent Functions in the Chebfun System. MS Thesis, Mathematical Modelling and Scientific Computing, Oxford University, 2009

  17. Salzer H E. Lagrangian interpolation at the Chebyshev points x n,ν = cos(νπ/n), ν = 0(1)n; some unnoted advantages. Computer J, 1972, 15: 156–159

    MathSciNet  MATH  Google Scholar 

  18. Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. New York: Gordon and Breach, 1993

    MATH  Google Scholar 

  19. Szegő G. Orthogonal Polynomials. Providence, RI: Amer Math Soc, 1939

    Google Scholar 

  20. Trefethen L N. Is Gauss quadrature better than Clenshaw-Curtis. SIAM Rev, 2008, 50: 67–87

    Article  MathSciNet  MATH  Google Scholar 

  21. Trefethen L N. Six myths of polynomial interpolation and quadrature. Math Today, 2011, 47: 184–188

    Google Scholar 

  22. Trefethen L N. Approximation Theory and Approximation Practice. Philadelphia: SIAM, in press

  23. Trefethen L N, et al. Chebfun Version 4.0, 2011,

  24. Waldvogel J. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer Math, 2006, 46: 195–202

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang H, Xiang S. On the convergence rates of Legendre approximation. Math Comp, 2012, 81: 861–877

    Article  MathSciNet  MATH  Google Scholar 

  26. Winston C. On mechanical quadratures formulae involving the classical orthogonal polynomials. Ann Math, 1934, 35: 658–677

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lloyd N. Trefethen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hale, N., Trefethen, L.N. Chebfun and numerical quadrature. Sci. China Math. 55, 1749–1760 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Chebfun
  • Clenshaw-Curtis quadrature
  • Gauss quadrature
  • barycentric interpolation formula
  • Riemann-Liouville integral
  • fractional calculus


  • 41A55
  • 97N80