Science China Mathematics

, Volume 55, Issue 12, pp 2481–2491 | Cite as

The construction of generalized B-spline low-pass filters related to possibility density

  • QiuHui Chen
  • LuoQing LiEmail author
  • Helmuth Malonek


Starting from piecewise constant functions, a novel family of generalized symmetric B-splines, with realizable ideal low-pass filters, are constructed. The first order generalized B-spline low-pass filter is closely related to functions analytic in a neighborhood of the unit disc and the generalized sinc functions. The properties of this kind of low-pass filters are investigated. The behavior of the generalized B-spline low-pass filter related to normalized Gaussian distribution is considered.


low-pass filter generalized B-spline analytic function Gaussian distribution 


42A38 44A15 62P30 65R10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedrosian E. A product theorem for Hilbert transform. Proc IEEE, 1963, 51: 868–869CrossRefGoogle Scholar
  2. 2.
    Boashash B. Estimating and interpreting the instantaneous frequency of a signal I: Fundamentals. Proc IEEE, 1992, 80: 417–430Google Scholar
  3. 3.
    Cerejeiras P, Chen Q H, Kaehler U. Bedrosian identity in Blaschke product case. Complex Anal Oper Theo, 2012, 6: 275–300MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen Q H, Micchelli C A, Wang Y. Functions with spline spectra and their applications. Int J Wavelets Multiresolut Inf Process, 2010, 8: 197–223MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chen Q H, Qian T. Sampling theorem and multi-scale spectrum based on non-linear Fourier atoms. Appl Anal, 2009, 88: 903–919MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen Q H, Wang Y B, Wang Y. A sampling theorem for non-bandlimited signals using generalized sinc functions. Comput Math Appl, 2008, 56: 1650–1661MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cohen L. Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1995Google Scholar
  8. 8.
    Chui C K. An Introduction to Wavelets. New York: Academic Press Inc, 1992zbMATHGoogle Scholar
  9. 9.
    Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992zbMATHCrossRefGoogle Scholar
  10. 10.
    de Boor C, Pinkus A. The B-spline recurrence relations of Chakalov and of Popoviciu. J Approx Theory, 2003, 124: 115–123MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London A, 1998, 454: 903–995MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mallat S. A Wavelet Tour of Signal Processing, 2nd ed. New York: Academic press Inc, 1999zbMATHGoogle Scholar
  13. 13.
    Nuttall A H. On the quadrature approximation to the Hilbert transform of modulated signals. Proc IEEE Lett, 1966, 54: 1458–1459Google Scholar
  14. 14.
    Picinbono B. On instantaneous amplitude and phase of signals. IEEE Trans Signal Processing, 1997, 45: 552–560CrossRefGoogle Scholar
  15. 15.
    Qian T, Chen Q H, Li L Q. Analytic unit quadrature signals with nonlinear phase. Physica D, 2005, 203: 80–87MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Tan L H, Yang L H, Huang D R. The structure of instantaneous frequencies of periodic analytic signals. Sci China Math, 2010, 53: 347–355MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Unser M, Aldroubi A, Eden M. On the asymptotic convergence of E-spline wavelets to Gabor functions. IEEE Trans Inform Theo, 1992, 38: 864–872MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Cisco School of InformaticsGuangdong University of Foreign StudiesGuangzhouChina
  2. 2.Faculty of Mathematics and Computer SciencesHubei UniversityWuhanChina
  3. 3.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations