Skip to main content
Log in

The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study discretization in classes of integro-differential equations

$\begin{gathered} u'(t) + \int_0^t {(\lambda _1 a_1 (t - \tau ) + \lambda _2 a_2 (t - \tau ) + \cdots + \lambda _n a_n (t - \tau ))} u(\tau )d\tau = 0,t > 0, \hfill \\ u(0) = 1,\lambda _j \geqslant 1,j = 1,2,...,n, \hfill \\ \end{gathered} $

, where the functions a j (t), 1 ⩽ jn, are completely monotonic on (0,∞) and locally integrable, but not constant. The equations are discretized using the backward Euler method in combination with order one convolution quadrature for the memory term. The stability properties of the discretization are derived in the weighted l 1(ρ; 0,∞) norm, where ρ is a given weight function. Applications to the weighted l 1 stability of the numerical solutions of a related equation in Hilbert space are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr R W, Hannsgen K B. A nonhomogeneous integro-differential equation in Hilbert space. SIAM J Math Anal, 1979, 10: 961–984

    Article  MathSciNet  MATH  Google Scholar 

  2. Carr R W, Hannsgen K B. Resolvent formulas for a Volterra equation in Hilbert space. SIAM J Math Anal, 1982, 13: 459–483

    Article  MathSciNet  MATH  Google Scholar 

  3. Carslaw H S, Jaeger J C. Conduction of Heat in Solids, 2nd ed. Oxford: Charendon Press, 1959

    Google Scholar 

  4. Ewing R E, Lin Y P, Sun T, et al. Sharp L 2-error estimates and superconvergence of mixed finite element methods for non-Fickian flows in porous media. SIAM J Numer Anal, 2002, 40: 1538–1560

    Article  MathSciNet  MATH  Google Scholar 

  5. Hannsgen K B, Wheeler R L. Uniform L 1 behavior in classes of integrodifferential equations with completely monotonic kernels. SIAM J Math Anal, 1984, 15: 579–594

    Article  MathSciNet  MATH  Google Scholar 

  6. Hannsgen K B. A linear integro-differential equation for viscoelastic rods and plates. Quart Appl Math, 1983, 41: 75–83

    MathSciNet  MATH  Google Scholar 

  7. Hannsgen K B, Wheeler R L. Complete monotonicity and resolvents of Volterra integro-differential equations. SIAM J Math Anal, 1982, 13: 962–969

    Article  MathSciNet  MATH  Google Scholar 

  8. Hannsgen K B. Indirect Abelian theorems and a linear Volterra equation. Trans Amer Math Soc, 1969, 142: 539–555

    Article  MathSciNet  MATH  Google Scholar 

  9. Harris C B, Noren R D. Uniform l 1 behavior of a time discretization method for a Volterra integro-differential equation with convex kernel; Stability. SIAM J Numer Anal, 2011, 49: 1553–1571

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin Y M, Li X J, Xu C J. Finite difference/spectral approximations for the fractional Cable equation. Math Comput, 2011, 80: 1369–1396

    Article  MathSciNet  MATH  Google Scholar 

  11. Lubich C. Convolution quadrature and discretized operational calculus I. Numer Math, 1988, 52: 129–145

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma J T, Jiang Y J. Moving collocation methods for time fractional differential equations and simulation of blowup. Sci China Math, 2011, 54: 611–622

    Article  MathSciNet  MATH  Google Scholar 

  13. MacCamy R C. An integro-differential equation with application in heat flow. Quart Appl Math, 1977, 35: 1–19

    MathSciNet  MATH  Google Scholar 

  14. McLean W, Thomée V. Numerical solution of an evolution equation with a positive type memory term. J Austral Math Soc Ser B, 1993, 35: 23–70

    Article  MathSciNet  MATH  Google Scholar 

  15. McLean W, Thomée V. Asymptotic behavior of numerical solutions of an evolution equation with memory. Asymptotic Anal, 1997, 14: 257–276

    MATH  Google Scholar 

  16. Noren R D. A linear Volterra integro-differential equation for viscoelastic rods and plates. Quart Appl Math, 1987, 45: 503–514

    MathSciNet  MATH  Google Scholar 

  17. Noren R D. Uniform L 1 behavior for the solution of a Volterra equation with a parameter. SIAM J Math Anal, 1988, 19: 270–286

    Article  MathSciNet  MATH  Google Scholar 

  18. Noren R D. Uniform L 1 behavior in classes of integro-differential equations with convex kernels. J Integral Equations Appl, 1988, 1: 385–369

    Article  MathSciNet  MATH  Google Scholar 

  19. Noren R D. Uniform L 1 behavior in class of linear Volterra equations. Quart Appl Math, 1989, 547–554

  20. Riesz F, Nagy B Sz.Functional Analysis. New York: Dover, 1990

    MATH  Google Scholar 

  21. Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math, 2006, 56: 193–209

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl Numer Math, 1993, 11: 309–319

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang T. A note on collocation methods for Volterra integro-differential equations with a weakly singular kernel. IMA J Numer Anal, 1993, 13: 93–99

    Article  MathSciNet  MATH  Google Scholar 

  24. Widder D V. The Laplace Transform. Princeton: Princeton University Press, 1946

    Google Scholar 

  25. Xu D. Uniform l 1 behaviour for time discretization of a Volterra equation with completely monotonic kernel: I. stability. IMA J Numer Anal, 2002, 22: 133–151

    Article  MATH  Google Scholar 

  26. Xu D. Uniform l 1 behaviour for time discretization of a Volterra equation with completely monotonic kernel II: Convergence. SIAM J Numer Anal, 2008, 46: 231–259

    Article  MATH  Google Scholar 

  27. Xu D. Stability of the difference type methods for linear Volterra equations in Hilbert spaces. Numer Math, 2008, 109: 571–595

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu D. Uniform l 1 behaviour in the second order difference type method of a linear Volterra equation with completely monotonic kernel I: stability. IMA J Numer Anal, 2011, 31: 1154–1180

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D. The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability. Sci. China Math. 56, 395–424 (2013). https://doi.org/10.1007/s11425-012-4410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4410-2

Keywords

MSC(2010)

Navigation