Skip to main content
Log in

Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses convergence and complexity of arbitrary, but fixed, order adaptive mixed element methods for the Poisson equation in two and three dimensions. The two main ingredients in the analysis, namely the quasi-orthogonality and the discrete reliability, are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition. The adaptive algorithms are shown to be contractive for the sum of the error of flux in L 2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions. The methods do not require a separate treatment for the data oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M. Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J Numer Anal, 2005, 42: 2320–2341

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth M. A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J Sci Comp, 2007, 30: 189–204

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics. New York: Wiley-Interscience, 2000

    Book  Google Scholar 

  4. Alonso A. Error estimators for a mixed method. Numer Math, 1996, 74: 385–395

    Article  MathSciNet  MATH  Google Scholar 

  5. Amrouche A, Bernardi C, Dauge M, et al. Vector potentials in three dimensional nonsmooth domains. Math Meth Appl Sci, 1998, 21: 823–864

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold D N, Falk R S, Winther R. Preconditioning in H(div) and applications. Math Comp, 1997, 66: 957–984

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold D N, Falk R S, Winther R. Finite element exterior calculus, homological techniques, and applications. Acta Numer, 2006, 16: 1–155

    Article  MathSciNet  Google Scholar 

  8. Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations. Basel: Birkhäuser, 2003

    MATH  Google Scholar 

  9. Babuska I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuska I, Vogelius M. Feedback and adaptive finite element solution of one-dimensional boundary value problem. Numer Math, 1984, 44: 75–102

    Article  MathSciNet  MATH  Google Scholar 

  11. Becker R, Mao S. An optimally convergent adaptive mixed finite element method. Numer Math, 2008, 111: 35–54

    Article  MathSciNet  MATH  Google Scholar 

  12. Becker R, Mao S, Shi Z, A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J Numer Anal, 2010, 47: 4639–4659

    Article  MathSciNet  MATH  Google Scholar 

  13. Binev P, Dahmen W, DeVore R. Adaptive finite element methods with convergence rates. Numer Math, 2004, 97: 219–268

    Article  MathSciNet  MATH  Google Scholar 

  14. Bochev P, Gunzburger M. On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles. SIAM J Numer Anal, 2005, 43: 340–362

    Article  MathSciNet  MATH  Google Scholar 

  15. Braess D, Verfürth R. A posteriori error estimators for the Raviart-Thomas element. SIAM J Numer Anal, 1996, 33: 2431–2444

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezzi F, Douglas J, Marini L D. Two families of mixed finite element for second order elliptic problems. Numer Math, 1985, 47: 217–235

    Article  MathSciNet  MATH  Google Scholar 

  17. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991

    Book  MATH  Google Scholar 

  18. Brezzi F, Fortin M, Stenberg R. Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math Models Methods Appl Sci, 1991, 1: 125–151

    Article  MathSciNet  MATH  Google Scholar 

  19. Carstensen C. A posteriori error estimate for the mixed finite element method. Math Comp, 1997, 66: 465–476

    Article  MathSciNet  MATH  Google Scholar 

  20. Carstensen C, Bartels S, Jansche S. A posteriori error estimate for nonconforming finite element methods. Numer Math, 2002, 103: 233–256

    Article  MathSciNet  Google Scholar 

  21. Carstensen C, Hoppe R H W. Convergence analysis of an adaptive nonconforming finite element method. Numer Math, 2006, 103: 251–266

    Article  MathSciNet  MATH  Google Scholar 

  22. Carstensen C, Hoppe R H W. Error reduction and convergence for an adaptive mixed finite element method. Math Comp, 2006, 75: 1033–1042

    Article  MathSciNet  MATH  Google Scholar 

  23. Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math, 2007, 107: 473–502

    Article  MathSciNet  MATH  Google Scholar 

  24. Carstensen C, Hu J, Orlando A. Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J Numer Anal, 2007, 45: 68–82

    Article  MathSciNet  MATH  Google Scholar 

  25. Carstensen C, Rabus H. An optimal adaptive mixed finite element method. Math Comp, 2011, 80: 649–667

    Article  MathSciNet  MATH  Google Scholar 

  26. Cascon J M, Kreuzer C, Nochetto R H, et al. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal, 2008, 46: 2524–2550

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen H, Xu X, Hoppe R H W. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems. Numer Math, 2010, 116: 383–419

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen L, Holst M, Xu J. Convergence and optimality of adaptive mixed finite element methods. Math Comp, 2009, 78: 35–53

    Article  MathSciNet  MATH  Google Scholar 

  29. Christiansen S H, Winther R. Smoothed projections in finite element exterior calculus. Math Comp, 2008, 77: 813–829

    Article  MathSciNet  MATH  Google Scholar 

  30. Dari E, Durán R, Padra C, et al. A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math Anal Numér, 1996, 30: 385–400

    MATH  Google Scholar 

  31. Dörfler W. A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal, 1996, 33: 1106–1124

    Article  MathSciNet  MATH  Google Scholar 

  32. Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations. Berlin: Springer-Verlag, 1986

    Book  MATH  Google Scholar 

  33. Gudi T. A new error analysis for discontinuous finite element methods for linear elliptic problems. Math Comp, 2010, 79: 2169–2189

    Article  MathSciNet  MATH  Google Scholar 

  34. Hiptmair R, Xu J. Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J Numer Anal, 2007, 45: 2483–2509

    Article  MathSciNet  MATH  Google Scholar 

  35. Hu J, Shi Z, Xu J. Convergence and optimality of adaptive nonconforming methods for high-order partial differential equations. Research Report 19, School of Mathematical Sciences, Peking University, 2009

  36. Hu J, Xu J. Convergence and optimality of the adaptive nonconforming linear element method for the Stokes equation. Preprint, 2010

  37. Karakashian O A, Pascal F. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J Numer Anal, 2003, 41: 2374–2399

    Article  MathSciNet  MATH  Google Scholar 

  38. Kossaczky I. A recursive approach to local mesh refinement in two and three dimensions. J Comp Appl Math, 1995, 55: 275–288

    Article  MathSciNet  Google Scholar 

  39. Larson M G, Målqvist A. A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer Math, 2008, 108: 487–500

    Article  MathSciNet  MATH  Google Scholar 

  40. Lovadina C, Stenberg R. Energy norm a posteriori error estimates for mixed finite element methods. Math Comp, 2006, 75: 1659–1674

    Article  MathSciNet  MATH  Google Scholar 

  41. Mao S, Shi Z. On the error bounds of nonconforming finite elements. Sci China Math, 2010, 53: 2917–2926

    Article  MathSciNet  MATH  Google Scholar 

  42. Mao S, Zhao X, Shi Z. Convergence of a standard adaptive nonconforming finite element method with optimal complexity. Appl Numer Math, 2010, 60: 673–688

    Article  MathSciNet  MATH  Google Scholar 

  43. Maubach J. Local bisection refinement for n-simplicial grids generated by reflection. SIAM J Sci Comp, 1995, 16: 210–227

    Article  MathSciNet  MATH  Google Scholar 

  44. Mekchay K, Nochetto R H. Convergcenc of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J Numer Anal, 2005, 43: 1803–1827

    Article  MathSciNet  MATH  Google Scholar 

  45. Mitchell W F. A comparison of adaptive refinement technieques for elliptic problems. ACM Trans Math Software, 1989, 15: 326–347

    Article  MathSciNet  MATH  Google Scholar 

  46. Monk P. Finite Element Methods for Maxwell’s Equations. New York: Oxford, 2003

    Book  MATH  Google Scholar 

  47. Morin P, Nochetto R H, Siebert K G. Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal, 2000, 38: 466–488

    Article  MathSciNet  MATH  Google Scholar 

  48. Morin P, Nochetto R H, Siebert K G. Convergence of adaptive finite element methods. SIAM Rev, 2002, 44: 631–658

    Article  MathSciNet  MATH  Google Scholar 

  49. Morin P, Siebert K G, Veeser A. A basic convergence result for conforming adaptive finite elements. Math Models Methods Appl Sci, 2008, 18: 707–737

    Article  MathSciNet  MATH  Google Scholar 

  50. Nédélec J C. Mixed finite elements in ℝ3. Numer Math, 1980, 35: 315–341

    Article  MathSciNet  MATH  Google Scholar 

  51. Nédélec J C. A new family of mixed finite elements in ℝ3. Numer Math, 1986, 50: 57–81

    Article  MathSciNet  MATH  Google Scholar 

  52. Nochetto R H, Siebert K G, Veeser A. Theory of adaptive finite element methods: an introduction. In: Deore R A, Kunoth A, eds. Multiscale, Nonlinear and Adaptive Approximation. New York: Springer, 2009, 409–542

    Chapter  Google Scholar 

  53. Oswald P. Integrid transfer operators and multilevel preconditioners for nonconforming discretizations. Appl Numer Math, 1996, 23: 139–158

    Article  MathSciNet  Google Scholar 

  54. Raviart P A, Thomas J. A mixed finite element method for 2nd order elliptic problems. In: Galigani I, Magenes E, eds. Mathematical Aspects of the Finite Elements Method. Lectures Notes in Math, 606. Berlin: Springer, 1977, 292–315

    Chapter  Google Scholar 

  55. Schöberl J. Commuting quasi-interpolation operators for mixed finite elements. Report ISC-01-10-MATH, Institute for Scientific Computing, Texas A&M University, 2001

  56. Schöberl J. A posteriori error estimates for Maxwell equations. Math Comp, 2008, 77: 633–649

    Article  MathSciNet  MATH  Google Scholar 

  57. Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483–493

    Article  MathSciNet  MATH  Google Scholar 

  58. Stevenson R. Optimality of a standard adaptive finite element method. Found Comput Math, 2007, 7: 245–269

    Article  MathSciNet  MATH  Google Scholar 

  59. Stevenson R. The completion of locally refined simplicial partitions created by bisection. Math Comp, 2008, 77: 227–241

    Article  MathSciNet  MATH  Google Scholar 

  60. Verfürth R. A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Chichester: Wiley-Teubner, 1996

    MATH  Google Scholar 

  61. Wohlmuth B I, Hoppe R H W. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Math Comp, 1999, 68: 1347–1378

    Article  MathSciNet  MATH  Google Scholar 

  62. Traxler C T. An algorithm for adaptive mesh refinement in n dimensions. Computing, 1997, 59: 115–137

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhong L, Chen L, Shu S, et al. Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math Comp, 2011, 81: 623–642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiFeng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Xu, Y. Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation. Sci. China Math. 55, 1083–1098 (2012). https://doi.org/10.1007/s11425-012-4384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4384-0

Keywords

MSC(2010)

Navigation