Skip to main content
Log in

Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ⩾ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improves the analysis of Danchin and of the author inasmuch as we may take initial density in \(B_{p,1}^{\tfrac{N} {p}}\) with 1 ⩽ p < +∞. Our result relies on a new a priori estimate for the velocity, where we introduce a new unknown called effective velocity to weaken one of the couplings between the density and the velocity. In particular, our result is the first in which we obtain uniqueness without imposing hypothesis on the gradient of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H, Paicu M. Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique. Ann Inst Fourier, 2007, 57: 883–917

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri H, Chemin J Y. Équations d’ondes quasilinéaires et estimation de Strichartz. Amer J Math, 1999, 121: 1337–1377

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. New York: Springer, 2011

    Book  MATH  Google Scholar 

  4. Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci École Norm Sup, 1981, 14: 209–246

    MathSciNet  MATH  Google Scholar 

  5. Bresch D, Desjardins B. Existence of global weak solutions for a 2D Viscous shallow water equations and convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238: 211–223

    MathSciNet  MATH  Google Scholar 

  6. Chemin JY. Théorèmes d’unicité pour le syst`eme de Navier-Stokes tridimensionnel. J Anal Math, 1999, 77: 27–50

    Article  MathSciNet  MATH  Google Scholar 

  7. Chemin J Y. About Navier-Stokes system. Prépublication du Laboratoire d’Analyse Numérique de Paris 6, 1996, R96023

    Google Scholar 

  8. Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J Differential Equations, 1992, 121: 314–328

    Article  MathSciNet  Google Scholar 

  9. Danchin R. Fourier analysis method for PDE’s. Preprint, November 2005

  10. Danchin R. Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm Partial Differential Equations, 2001, 26: 1183–1233

    Article  MathSciNet  MATH  Google Scholar 

  11. Danchin R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch Ration Mech Anal, 2001, 160: 1–39

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin R. On the uniqueness in critical spaces for compressible Navier-Stokes equations. NoDEA Nonlinear Differentiel Equations Appl, 2005, 12: 111–128

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin R. Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density. Comm Partial Differential Equations, 2007, 32: 1373–1397

    Article  MathSciNet  MATH  Google Scholar 

  14. Germain P. Weak stong uniqueness for the isentropic compressible Navier-Stokes system. J Math Fluid Mech, in press

  15. Haspot B. Cauchy problem for capillarity Van der Waals mode. In: Hyperbolic Problems: Theory, Numerics and Applications. Proc Sympos Appl Math, 67, Part 2. Providence, RI: Amer Math Soc, 2009, 625–634

    Google Scholar 

  16. Haspot B. Cauchy problem for viscous shallow water equations with a term of capillarity. Math Models Methods Appl Sci, 2010, 20: 1–39

    Article  MathSciNet  Google Scholar 

  17. Haspot B. Local well-posedness results for density-dependent incompressible fluids. Ann Inst Fourier, in press

  18. Haspot B. Regularity of weak solutions of the compressible isentropic Navier-Stokes equation. Arxiv, January 2010

  19. Haspot B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch Ration Mech Anal, 2011, 202: 427–460

    Article  Google Scholar 

  20. Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303: 169–181

    MathSciNet  MATH  Google Scholar 

  21. Hoff D. Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow. SIAM J Math Anal, 2006, 37: 1742–1760

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoff D. Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of the heat conducting fluids. Arch Ration Mech Anal, 1997, 139: 303–354

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differential Equations, 1995, 120: 215–254

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoff D. Compressible flow in a half-space with Navier boundary condition. J Math Fluid Mech, 2005, 7: 315–338

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoff D. Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Comm Pure Appl Math, 2002, 55: 1365–1407

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoff D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoff D, Zumbrum K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603–676

    Article  MathSciNet  MATH  Google Scholar 

  28. Kazhikov A V. The equation of potential flows of a compressible viscous fluid for small Reynolds numbers: existence, uniqueness and stabilization of solutions. Sibirsk Mat Zh, 1993, 34: 70–80

    Google Scholar 

  29. Kazhikov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for onedimensional equations of a viscous gas. Prikl Mat Meh, 1977, 41: 282–291

    Google Scholar 

  30. Lions P L. Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models. Oxford: Oxford University Press, 1998

    MATH  Google Scholar 

  31. Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20: 67–104

    MathSciNet  MATH  Google Scholar 

  32. Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heatconductive fluids. Proc Japan Acad Ser A Math Sci, 1979, 55: 337–342

    Article  MathSciNet  MATH  Google Scholar 

  33. Meyer Y. Wavelets, paraproducts, and Navier-Stokes equation. In: Current Developments in Mathematics, 1996 (Cambridge, MA). Boston: International Press, 1997, 105–212

    Google Scholar 

  34. Nash J. Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull Soc Math France, 1962, 90: 487–497

    MathSciNet  MATH  Google Scholar 

  35. Runst T, Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, 3. Berlin: Walter de Gruyter and Co., 1996, 1–24

    Google Scholar 

  36. Serre D. Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C R Acad Sci Sér 1, 1986, 303: 639–642

    MATH  Google Scholar 

  37. Solonnikov V A. Estimates for solutions of nonstationary Navier-Stokes systems. Zap Nauchn Sem LOMI, 1973, 38: 153–231; J Soviet Math, 1977, 8: 467–529

    MathSciNet  MATH  Google Scholar 

  38. Vaigant V A, Kazhikhov A V. On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. Siberian Math J, 1995, 36: 1108–1141

    Article  MathSciNet  Google Scholar 

  39. Valli V, Zajaczkowski W. Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun Math Phys, 1986, 103: 259–296

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Haspot.

Additional information

Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haspot, B. Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces. Sci. China Math. 55, 309–336 (2012). https://doi.org/10.1007/s11425-012-4360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4360-8

Keywords

MSC(2010)

Navigation