Skip to main content
Log in

On the rigidity of solitary waves for the focusing mass-critical NLS in dimensions d2

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For the focusing mass-critical NLS \(iu_t + \Delta u = - \left| u \right|^{\tfrac{4} {d}} u\), it is conjectured that the only global non-scattering solution with ground state mass must be a solitary wave up to symmetries of the equation. In this paper, we settle the conjecture for H 1 x initial data in dimensions d = 2, 3 with spherical symmetry and d ⩾ 4 with certain splitting-spherically symmetric initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh J, Löfström J. Interpolation Spaces. New-York: Berlin-Heidelberg, 1976

    Book  MATH  Google Scholar 

  2. Begout P, Vargas A. Mass concentration phenomena for the L 2-critical nonlinear Schrödinger equation. Trans Amer Math Soc, 2007, 359: 5257–5282

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J. Refinements of Strichartz inequality and applications to 2d-NLS with critical nonlinearity. Int Math Res Not, 1998, 253–284

  4. Bourgain J, Wang W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann Scuola Norm Sup Pisa Cl Sci, 1997, 25: 197–215

    MathSciNet  MATH  Google Scholar 

  5. Berestycki H, Lions P L. Existence d’ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon. C R Acad Sci Paris Sér A, 1979, 288: 395–398

    MathSciNet  MATH  Google Scholar 

  6. Cazenave T, Weissler F B. The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal, 1990, 14: 807–836

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave T. Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, vol. 10. Providence, RI: Amer Math Soc, 2003

    Google Scholar 

  8. Christ M, Weinstein M. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 1991, 100: 87–109

    Article  MathSciNet  MATH  Google Scholar 

  9. Dodson B. Global well-posedness and scattering for the defocusing, L 2-critical, nonlinear Schrödinger equation when d = 1. ArXiv:1010.0040

  10. Ginibre J, Velo G. Smoothing properties and retarded estimates for some dispersive evolution equations. Comm Math Phys, 1992, 144: 163–188

    Article  MathSciNet  MATH  Google Scholar 

  11. Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18: 1794–1797

    Article  MathSciNet  MATH  Google Scholar 

  12. Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schrödinger equations revisited. Int Math Res Not, 2005, 46: 2815–2828

    Article  MathSciNet  Google Scholar 

  13. Keel M, Tao T. Endpoint Strichartz Estimates. Amer J Math, 1998, 120: 955–980

    Article  MathSciNet  MATH  Google Scholar 

  14. Keraani S. On the defect of compactness for the Strichartz estimates for the Schrödinger equations. J Differential Equations, 2001, 175: 353–392

    Article  MathSciNet  MATH  Google Scholar 

  15. Keraani S. On the blow-up phenomenon of the critical nonlinear Schrödinger equation. J Funct Anal, 2006, 235: 171–192

    Article  MathSciNet  MATH  Google Scholar 

  16. Killip R, Li D, Visan M, et al. Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS. ArXiv:0804.1124

  17. Killip R, Visan M, Tao T. The cubic nonlinear Schrödinger equation in two dimensions with radial data. ArXiv:0707.3188

  18. Killip R, Visan M, Zhang X. The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. ArXiv:0708.0849

  19. Kwong M K. Uniqueness of positive solutions of Δu − u + u p = 0 in ℝn. Arch Rat Mech Anal, 1989, 105: 243–266

    Article  MathSciNet  MATH  Google Scholar 

  20. Martel Y, Merle F. Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom Funct Anal, 2001, 11: 74–123

    Article  MathSciNet  MATH  Google Scholar 

  21. Merle F. On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm Pure Appl Math, 1992, 45: 203–254

    Article  MathSciNet  MATH  Google Scholar 

  22. Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power. Duke Math J, 1993, 69: 427–453

    Article  MathSciNet  MATH  Google Scholar 

  23. Merle F, Tsutsumi Y. L 2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J Differential Equations, 1990, 84: 205–214

    Article  MathSciNet  MATH  Google Scholar 

  24. Merle F, Raphael P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann Math, 2005, 161: 157–222

    Article  MathSciNet  MATH  Google Scholar 

  25. Nawa H. Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power. Comm Pure Appl Math, 1999, 52: 193–270

    Article  MathSciNet  Google Scholar 

  26. Perelman G. On the blow-up phenomenon for the critical nonlinear Schrödinger equation in 1D. Ann Henri Poincaré, 2001, 2: 605–673

    Article  MathSciNet  MATH  Google Scholar 

  27. Staffilani G. On the generalized Korteweg-de Vries-type equations. Differential Integral Equations, 1997, 10: 777–796

    MathSciNet  MATH  Google Scholar 

  28. Strichartz R S. Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math J, 1977, 44: 705–774

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao T, Visan M, Zhang X. Global well-posedness and scattering for the mass-critical defocusing NLS with spherical symmetry in higher dimensions. Duke Math J, 2007, 140: 165–202

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao T, Visan M, Zhang X. Minimal-mass blowup solutions of the mass-critical NLS. Forum Math, in press

  31. Tao T. On the asymptotic behavior of large radial data for a focusing nonlinear Schrödinger equation. Dynamics Partial Differential Equations, 2004, 1: 1–48

    MATH  Google Scholar 

  32. Tao T. A (concentration-)compact attractor for high-dimensional nonlinear Schrödinger equations. Dynamics Partial Differential Equations, 2007, 4: 1–53

    MATH  Google Scholar 

  33. Taylor M E. Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, vol. 81. Providence, RI: Amer Math Soc, 2000

    MATH  Google Scholar 

  34. Weinstein M. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567–576

    Article  MATH  Google Scholar 

  35. Weinstein M I. Modulation stability of ground states of nonlinear Schrödinger equations. SIAM J Math Anal, 1985, 16: 472–491

    Article  MathSciNet  MATH  Google Scholar 

  36. Weinstein M I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm Pure Appl Math, 1986, 39: 51–68

    Article  MathSciNet  MATH  Google Scholar 

  37. Weinstein M. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm Partial Differential Equations, 1986, 11: 545–565

    Article  MathSciNet  MATH  Google Scholar 

  38. Weinstein M. The nonlinear Schrödinger equation-singularity formation, stability and dispersion. In: “The connection between infinite-dimensional and finite-dimensional dynamical systems”, Contemp Math, vol. 99. Providence, RI: Amer Math Soc, 1989, 213–232

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYi Zhang.

Additional information

Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, X. On the rigidity of solitary waves for the focusing mass-critical NLS in dimensions d2 . Sci. China Math. 55, 385–434 (2012). https://doi.org/10.1007/s11425-012-4359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4359-1

Keywords

MSC(2010)

Navigation