Skip to main content
Log in

A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey paper, we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space. We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T. Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180: 1–73

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri H, Chemin J-Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. In: Grundlehren der mathematischen Wissenschaften. Berlin: Springer-Verlag, 2011

    Google Scholar 

  3. Bony J-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci École Norm Sup, 1981, 14: 209–246

    MathSciNet  MATH  Google Scholar 

  4. Cannone M, Meyer Y, Planchon F. Solutions autosimilaires des équations de Navier-Stokes. Séminaire Équations aux Dérivées Partielles de l’École Polytechnique, 1993–1994

  5. Chemin J-Y. Remarques sur l’existence pour le système de Navier-Stokes incompressible. SIAM Journal of Mathematical Analysis, 1992, 23: 20–28

    Article  MathSciNet  MATH  Google Scholar 

  6. Chemin J-Y. Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J d’Analyse Mathématique, 1999, 77: 27–50

    Article  MathSciNet  MATH  Google Scholar 

  7. Charve F, Danchin R. A global existence result for the compressible Navier-Stokes equations in the critical L p framework. Arch Ration Mech Anal, 2010, 198: 233–271

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Q, Miao C, Zhang Z. Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Rev Mat Iberoamericana, 2010, 26: 915–946

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen Q, Miao C, Zhang Z. Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity. Comm Pure Appl Math, 2010, 63: 1173–1224

    Article  MathSciNet  MATH  Google Scholar 

  10. Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl, 2004, 83: 243–275

    MathSciNet  MATH  Google Scholar 

  11. Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579–614

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin R. Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann Sci École Norm Sup, 2002, 35: 27–75

    MathSciNet  MATH  Google Scholar 

  13. Danchin R. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer J Math, 2002, 124: 1153–1219

    Article  MathSciNet  MATH  Google Scholar 

  14. Danchin R. Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm Partial Differential Equations, 2002, 27: 2531–2532

    MathSciNet  Google Scholar 

  15. Danchin R. On the uniqueness in critical spaces for compressible Navier-Stokes equations. NoDEA Nonlinear Differential Equations Appl, 2005, 12: 111–128

    Article  MathSciNet  MATH  Google Scholar 

  16. Danchin R. Fourier Analysis Methods for PDEs. 2006, may be downloaded from http://perso-math.univ-mlv.fr/users/danchin.raphael/recherche.html

  17. Danchin R. Uniform estimates for transport-diffusion equations. J Hyperbolic Differ Equ, 2007, 4: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  18. Danchin R. Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density. Comm Partial Differential Equations, 2007, 32: 1373–1397

    Article  MathSciNet  MATH  Google Scholar 

  19. Danchin R. On the solvability of the compressible NavierStokes system in bounded domains. Nonlinearity, 2010, 23: 383–407

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujita H, Kato T. On the Navier-Stokes initial value problem I. Arch Ration Mech Anal, 1964, 16: 269–315

    Article  MathSciNet  MATH  Google Scholar 

  21. Furioli G, Lemarié-Rieusset P G, Terraneo E. Unicité des solutions mild des équations de Navier-Stokes dans L 3(ℝ3) et d’autres espaces limites. Rev Mat Iberoamericana, 2000, 16: 605–667

    Article  MathSciNet  MATH  Google Scholar 

  22. Germain P. Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J Math Fluid Mech, 2011, 13: 137–146

    Article  MathSciNet  Google Scholar 

  23. Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 62: 186–212

    Article  MathSciNet  Google Scholar 

  24. Kato T. Strong L p-solutions of the Navier-Stokes equation in ℝm, with applications to weak solutions. Math Z, 1984, 187: 471–480

    Article  MathSciNet  MATH  Google Scholar 

  25. Haspot B. Well-posedness in critical spaces for barotropic viscous fluids. ArXiv:0903.0533

  26. Haspot B. Well-posedness in critical spaces for compressible Navier-Stokes system. ArXiv:0904.1354

  27. Haspot B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch Ration Mech Anal, 2011, 202: 427–460

    Article  Google Scholar 

  28. Hmidi T. Régularité höldérienne des poches de tourbillon visqueuses. J Math Pures Appl, 2005, 84: 1455–1495

    MathSciNet  MATH  Google Scholar 

  29. Kozono H, Yamazaki M. Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data. Comm Partial Differential Equations, 1994, 19: 959–1014

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions P L. Mathematical topics in fluid mechanics. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 1998

  31. Paicu M. Équation anisotrope de Navier-Stokes dans des espaces critiques. Rev Mat Iberoamericana, 2005, 21: 179–235

    Article  MathSciNet  MATH  Google Scholar 

  32. Runst T, Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Nonlinear Analysis and Applications, vol. 3. Berlin: Walter de Gruyter, 1996

    Book  MATH  Google Scholar 

  33. Salvi R, Straškraba I. Global existence for viscous compressible fluids and their behavior as t→∞. J Fac Sci Tokyo Univ, 1993, 20: 17–51

    Google Scholar 

  34. Vishik M. Hydrodynamics in Besov spaces. Arch Ration Mech Anal, 1998, 145: 197–214

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin.

Additional information

Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danchin, R. A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations. Sci. China Math. 55, 245–275 (2012). https://doi.org/10.1007/s11425-011-4357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4357-8

Keywords

MSC(2010)

Navigation