Skip to main content
Log in

Martin boundary and exit space on the Sierpinski gasket

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We define a new Markov chain on the symbolic space representing the Sierpinski gasket (SG), and show that the corresponding Martin boundary is homeomorphic to the SG while the minimal Martin boundary is the three vertices of the SG. In addition, the harmonic structure induced by the Markov chain coincides with the canonical one on the SG. This suggests another approach to consider the existence of Laplacians on those self-similar sets for which the problem is still not settled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barlow M T, Bass R. The construction of Brownian motion on the Sierpiński carpet. Ann Inst H Poincaré Probab Statist, 1989, 25: 225–257

    MathSciNet  MATH  Google Scholar 

  2. Barlow M T, Perkins E A. Brownian motion on the Sierpiński gasket. Probab Theory Related Fields, 1988, 79: 543–623

    Article  MathSciNet  MATH  Google Scholar 

  3. Chung K L. A course in probability theory. 2nd ed. New York-London: Academic Press, 1974

    MATH  Google Scholar 

  4. Denker M, Sato H. Sierpiński gasket as a Martin boundary I: Martin kernels. Potential Anal, 2001, 14: 211–232

    Article  MathSciNet  MATH  Google Scholar 

  5. Denker M, Sato H. Sierpiński gasket as a Martin boundary II: The intrinsic metric. Publ Res Inst Math Sci, 1999, 35: 769–794

    Article  MathSciNet  MATH  Google Scholar 

  6. Denker M, Sato H. Reflections on harmonic analysis of the Sierpiński gasket. Math Nachr, 2002, 241: 32–55

    Article  MathSciNet  MATH  Google Scholar 

  7. Dynkin E. The boundary theory of Markov processes (the discrete case). Russian Math Surveys, 1969, 24: 3–42

    MathSciNet  MATH  Google Scholar 

  8. Imai A. The difference between letters and a Martin kernel of a modulo 5 Markov chain. Adv Appl Math, 2002, 28: 82–106

    Article  Google Scholar 

  9. Hajnal J. Weak ergodicity in non-homogeneous Markov chains. Proc Cambridge Philos Soc, 1958, 54: 233–246

    Article  MathSciNet  MATH  Google Scholar 

  10. Ju H, Lau K-S, Wang X-Y. Post-critically finite fractal and Martin boundary. Trans Amer Math Soc, 2012, 364: 103–118

    Article  MathSciNet  Google Scholar 

  11. Kaimanovich V. Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization. In: Fractals in Graz 2001, Trends Math. Boston: Birhäuser, 2003, 145–183

    Chapter  Google Scholar 

  12. Kigami J. A harmonic calculus on the Sierpiński spaces. Japan J Appl Math, 1989, 6: 259–290

    Article  MathSciNet  MATH  Google Scholar 

  13. Kigami J. Harmonic calculus on p.c.f. self-similar sets. Trans Amer Math Soc, 1993, 335: 721–755

    Article  MathSciNet  MATH  Google Scholar 

  14. Kigami J. Analysis on Fractals. Cambridge Tracts in Mathematics, 143. Cambridge: Cambridge University Press, 2001

    Book  MATH  Google Scholar 

  15. Kigami J. Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees. Adv Math, 2010, 225: 2674–2730

    Article  MathSciNet  MATH  Google Scholar 

  16. Kusuoka S. Dirichlet forms on fractals and products of random matrices. Publ Res Inst Math Sci, 1989, 25: 659–680

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau K-S, Wang X-Y. Self-similar sets as hyperbolic boundaries. Indiana Univ Math J, 2009, 58: 1777–1795

    Article  MathSciNet  MATH  Google Scholar 

  18. Lau K-S, Wang X-Y. Self-similar sets, hyperbolic boundaries and Martin boundaries. Preprint

  19. Lindstrøm T. Brownian motion on nested fractals. Mem Amer Math Soc, 1990, 83, no. 420, iv+128 pp

    Google Scholar 

  20. Pearse E P J. Self-similar fractals as boundaries of networks. Preprint

  21. Revuz D. Markov Chains. 2nd ed. Amsterdam: North-Holland Publishing Co., 1984

    MATH  Google Scholar 

  22. Strichartz R S. The Laplacian on the Sierpinski gasket via the method of averages. Pacific J Math, 2001, 201: 241–256

    Article  MathSciNet  MATH  Google Scholar 

  23. Strichartz R S. Differential Equations on Fractals, a Tutorial. Princeton: Princeton University Press, 2006

    MATH  Google Scholar 

  24. Woess W. Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, 138. Cambridge: Cambridge University Press, 2000

    Book  MATH  Google Scholar 

  25. Wolfowitz J. Products of indecomposable, aperiodic, stochastic matrices. Proc Amer Math Soc, 1963, 14: 733–737

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sze-Man Ngai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, KS., Ngai, SM. Martin boundary and exit space on the Sierpinski gasket. Sci. China Math. 55, 475–494 (2012). https://doi.org/10.1007/s11425-011-4339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4339-x

Keywords

MSC(2010)

Navigation