Science China Mathematics

, Volume 55, Issue 1, pp 1–72 | Cite as

Variables separated equations: Strikingly different roles for the Branch Cycle Lemma and the finite simple group classification

  • Michael D. Fried


Davenport’s Problem asks: What can we expect of two polynomials, over Z, with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport, Lewis and Schinzel.

By bounding the degrees, but expanding the maps and variables in Davenport’s Problem, Galois stratification enhanced the separated variable theme, solving an Ax and Kochen problem from their Artin Conjecture work. Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.

By restricting the variables, but leaving the degrees unbounded, we found the striking distinction between Davenport’s problem over Q, solved by applying the Branch Cycle Lemma, and its generalization over any number field, solved by using the simple group classification. This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups. Guralnick and Thompson led its solution in stages. We look at two developments since the solution of Davenport’s problem.
  • Stemming from MacCluer’s 1967 thesis, identifying a general class of problems, including Davenport’s, as monodromy precise.

  • R(iemann)E(xistence)T(heorem)’s role as a converse to problems generalizing Davenport’s, and Schinzel’s (on reducibility).

We use these to consider: Going beyond the simple group classification to handle imprimitive groups, and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.


group representations normal varieties Galois stratification Davenport pair Monodromy group primitive group covers fiber products Open Image Theorem Riemann’s existence theorem genus zero problem 


Primary 11G18, 141130, 14H25, 14M41, 20B15, 20C15, 30F10 Secondary 11R58, 12D05, 12E30, 12F10, 20E22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhyankar S. Coverings of algebraic curves. Amer J Math, 1957, 79: 825–856zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Abhyankar S. Projective polynomials. Proc Amer Math Soc, 1997, 125: 1643–1650zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Agricola I. Old and new on the exceptional group G 2. Notice Amer Math Soc, 2008, 55: 922–929zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ahlfors L. Complex Analysis: an introduction to the theory of analytic functions of one complex variable, 3rd ed. In: Series in Pure and Applied Math. New York: The McGraw-Hill Companies, 1979Google Scholar
  5. 5.
    Aitken W. On value sets of polynomials over a finite field. Finite Fields Appl, 1998, 4: 441–449zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Artin E. Über die Zetafuncktionen gewisser algebraischer Zahlkörper. Math Ann, 1923, 89: 147–156zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Artin E. Geometric Algebra. New York: Interscience, 1957zbMATHGoogle Scholar
  8. 8.
    Aschbacher M, Scott L. Maximal subgroups of finite groups. J Algebra, 1985, 92: 44–80zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Avanzi R M, Zannier U M. Genus one curves defined by separated variable polynomials and a polynomial Pell equation. Acta Arith, 2001, 99: 227–256zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Avanzi R M, Zannier U M. The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y (t). Comp Math Kluwer Acad, 2003, 139: 263–295zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ax J. The elementary theory of finite fields. Ann of Math, 1968, 88: 239–271zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ax J. A mathematical approach to some problems in number theory. Proceedings of Symposia in Pure Mathmatics, vol. 20. Providence, RI: Amer Math Soc, 1971, 161–190Google Scholar
  13. 13.
    Ax J, Kochen S. Diophantine problems over local fields III (culminating paper of the series). Ann of Math, 1966, 83: 437–456zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bailey P, Fried M D. Hurwitz monodromy, spin separation and higher levels of a Modular Tower. In: Proceedings of Symposia in Pure Mathmatics, vol.70. Providence, R I: Amer Math Soc, 2002Google Scholar
  15. 15.
    Beardon A, Ng T. Parameterizations of algebraic curves. Ann Acad Sci Fenn Math, 2006, 31: 541–554zbMATHMathSciNetGoogle Scholar
  16. 16.
    Beke T. Zeta functions of equivalence relations over finite fields. Finite Fields Appl, 2011, 17: 68–80zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Beukers F, Shorey T N, Tijdeman R. Irreducibility of polynomials and arithmetic progressions with equal products of terms. No Th in Prog. Berlin-New York: Walter de Gruyter, 1999Google Scholar
  18. 18.
    Biggers R, Fried M. Moduli spaces of covers and the Hurwitz monodromy group. Crelles J, 1982, 335: 87–121zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Biggers R, Fried M. Irreducibility of moduli spaces of cyclic unramified covers of genus g curves. Trans Amer Math Soc, 1986, 295: 59–70zbMATHMathSciNetGoogle Scholar
  20. 20.
    Bilu Y F. Quadratic factors of f(x) − g(y). Acta Arith, 1999, 90: 341–355zbMATHMathSciNetGoogle Scholar
  21. 21.
    Bilu Y F, Tichy R F. The diophantine equation f(x) − g(y). Acta Arith, 2000, 95: 261–288zbMATHMathSciNetGoogle Scholar
  22. 22.
    Bluher A. Explicit formulas for strong Davenport pairs. Act Arith, 2004, 112.4: 397–403MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bombieri E. On exponential sum in finite fields II. Invent Math, 1978, 47: 20–39MathSciNetCrossRefGoogle Scholar
  24. 24.
    Borevich Z I, Shafarevich I R. Number Theory. New York: Academic Press, 1966Google Scholar
  25. 25.
    Carmichael R. Introduction to the Theory of Groups of Finite Order. New York: Dover Publications, 1956zbMATHGoogle Scholar
  26. 26.
    Cassels J, Fröhlich A. Algebraic Number Theory. Washington D C: Thompson Book Co., 1967zbMATHGoogle Scholar
  27. 27.
    Fuchs C, Zannier U. Composite rational functions expressible with few terms. Preprint, 2010Google Scholar
  28. 28.
    Cohen S D. Exceptional polynomials and the reducibility of substitution polynomials. Enseign Math, 1990, 36: 309–318MathSciNetGoogle Scholar
  29. 29.
    Cohen S D, Fried M D. Lenstra’s proof of the Carlitz-Wan conjecture on exceptional polynomials: an elementary version. Finite Fields Appl, 1995, 1: 372–375zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Conway J B. Functions of a complex variable, 2nd ed. New York: Springer-Verlag Grad text, 1978CrossRefGoogle Scholar
  31. 31.
    Cohen S D, Matthews R W. A class of exceptional polynomials. Trans Amer Math Soc, 1994, 345: 897–909zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Paths that are classical generators of the punctured sphere: The genus 0 problem for rational functions:
  33. 33.
    Cox D. What is the Role of Algebra in Applied Mathematics? Notices Amer Math Soc, 2005: 1193–1198Google Scholar
  34. 34.
    Couveignes J M, Cassou-Nogus P. Factorisations explicites de g(y) − h(z). Acta Arith, 1999, 87: 291–317zbMATHMathSciNetGoogle Scholar
  35. 35.
    Curtis C W, Kantor W M, Seitz G M. The 2-transitive permutation representations of the finite Chevalley groups. Trans Amer Math Soc, 1976, 218: 1–59zbMATHMathSciNetGoogle Scholar
  36. 36.
    Davenport H, Lewis D J, Schinzel A. Equations of Form f(x) = g(y). Quart J Math Oxford, 1961, 12: 304–312zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Davenport H, Lewis D J. Notes on Congruences (I). Quart J Math Oxford, 1963, 14: 51–60zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Dèbes P. Arithmétique et espaces de modules de revêvetements. In: Number Theory in Progress. Berlin-New York: Walter de Gruyter, 1999Google Scholar
  39. 39.
    Dèbes P. Arithmétique des revêtements de la droite.
  40. 40.
    Dèbes P, Fried M. Rigidity and real residue class fields. Acta Arith, 1990, 56: 13–45Google Scholar
  41. 41.
    Dèbes P, Fried M D. Arithmetic variation of fibers in families: Hurwitz monodromy criteria for rational points on all members of the family. Crelles J, 1990, 409: 106–137zbMATHGoogle Scholar
  42. 42.
    Dèbes P, Fried M D. Nonrigid situations in constructive Galois theory. Pacific J Math, 1994, 163: 81–122zbMATHMathSciNetGoogle Scholar
  43. 43.
    Dèbes P, Fried M D. Integral Specialization of families of rational functions. Pacific J Math, 1999, 190: 75–103CrossRefGoogle Scholar
  44. 44.
    Deligne P, Mumford D. The irreducibility of the space of curves of given genus. Publ Math IHES, 1969, 36: 75–100zbMATHMathSciNetGoogle Scholar
  45. 45.
    Deligne P. La conjecture de Weil I. Publ Math IHES, 1974, 43: 273–307MathSciNetGoogle Scholar
  46. 46.
    Deligne P. La conjecture de Weil: II. Publ Math IHES, 1980, 52: 137–252zbMATHMathSciNetGoogle Scholar
  47. 47.
    Deligne P. Le Groupe fondamental de la Droite Projective Moins Trois Points. In: Galois Groups over Q. New York: Springer-Verlag, 1989Google Scholar
  48. 48.
    Denef J. The rationality of the Poincaré series associated to the p-adic points on a variety. Invent Math, 1984, 77: 1–23zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Denef J, Loeser F. Definable sets, motives and p-adic integrals., 2001, 14: 429–4zbMATHMathSciNetGoogle Scholar
  50. 50.
    Dwork B. On the zeta function of a hypersurface III. Ann of Math, 1966, 83: 457–519MathSciNetCrossRefGoogle Scholar
  51. 51.
    Evertse J H. Linear equations with unknowns from a multiplicative group whose solutions lie in a small number of subspaces.
  52. 52.
    Feit W. Automorphisms of symmetric balanced incomplete block designs. Math Zeit, 1970, 118: 40–49zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Feit W. Automorphisms of symmetric balanced incomplete block designs with doubly transitive automorphism groups. J Combin Theory Ser A, 1973, 14: 221–247zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    Feit W. Some consequences of the classification of the finite simple groups. Proc Symp Pure Math, 1980, 37: 175–181MathSciNetGoogle Scholar
  55. 55.
    Fried M D. On a conjecture of Schur. Michigen Math J, 1970, 17: 41–55zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Fried M D. The field of definition of function fields and a problem in the reducibility of polynomials in two variables. Illinois J Math, 1973, 17: 128–146zbMATHMathSciNetGoogle Scholar
  57. 57.
    Fried M D. A theorem of Ritt and related diophantine problems. Crelles J, 1973, 264: 40–55zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Fried M D. On Hilberts irreducibility theorem. JNT, 1974, 6: 211–232zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Fried M D. On a theorem of MacCluer. Acta Arith, 1974, XXV: 122–127Google Scholar
  60. 60.
    Fried M D. Arithmetical properties of function fields (II): The generalized Schur problem. Acta Arith, 1974, XXV: 225–258MathSciNetGoogle Scholar
  61. 61.
    Fried M D. Fields of definition of function fields and Hurwitz families and; Groups as Galois groups. Commun Algebra, 1977, 5: 17–82zbMATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Fried M D. Galois groups and Complex Multiplication. Trans Amer Math Soc, 1978, 235: 141–162zbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Fried M D. Exposition on an Arithmetic-Group theoretic connection via Riemanns Existence Theorem. Proc Symp Pure Math, 1980, 37: 571–601MathSciNetGoogle Scholar
  64. 64.
    Fried M D. L-series on a Galois stratification. J Number Theory, 1986Google Scholar
  65. 65.
    Fried M D. Irreducibility results for separated variables equations. J Pure Appl Algebra, 1987, 48: 9–22zbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Fried M D. Arithmetic of 3 and 4 branch point covers: a bridge provided by noncongruence subgroups of SL2(Z). Progress Math, 1990, 81: 77–117MathSciNetGoogle Scholar
  67. 67.
    Fried M D. Global construction of general exceptional covers, with motivation for applications to coding. Contemp Math, 1994, 168: 69–100MathSciNetGoogle Scholar
  68. 68.
    Fried M D. Enhanced review of J.P. Serres Topics in Galois Theory, with examples illustrating braid rigidity. Contemp Math, 1995, 186: 15–32MathSciNetGoogle Scholar
  69. 69.
    Fried M D. Extension of Constants, Rigidity, and the Chowla-Zassenhaus Conjecture. Finite Fields Appl, 1995, 1: 326–359zbMATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    Fried M D. Introduction to Modular Towers: Generalizing the relation between dihedral groups and modular curves. Contemp Math, 1995, 186: 111–171MathSciNetGoogle Scholar
  71. 71.
    Fried M D. Separated variables polynomials and moduli spaces. In: Number Theory in Progress. Berlin-New York: Walter de Gruyter, 1999Google Scholar
  72. 72.
    Fried M D. Relating two genus 0 problems of John Thompson. Progress in Galois Theory, 2005, 51–85Google Scholar
  73. 73.
    Fried M D. The place of exceptional covers among all diophantine relations. J Finite Fields, 2005, 11: 367–433zbMATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Fried M D. Should Journals compensate Referees? Notices Amer Math Soc, 2007, 25: 585–589Google Scholar
  75. 75.
    Fried M D. Algebraic Equations and Finite Simple Groups. Miami: University of Michigan, Department of Mathematics, 2008Google Scholar
  76. 76.
    Fried M D. Riemann’s Existence Theorem: An elementary approach to moduli. In preparationGoogle Scholar
  77. 77.
    Fried M D. Paths that are classical generators of the punctured sphere.
  78. 78.
    Fried M D. The genus 0 problem for rational functions.
  79. 79.
    Fried M D. Alternating groups and moduli space lifting Invariants. Israel J Math, 2010, 179: 57–125zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Fried M D, Guralnick R, Saxl J. Schur covers and carlitzs conjecture. Israel J Math, 1993, 82: 157–225zbMATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Fried M D, Gusić I. Schinzel’s Problem: Imprimitive covers and the monodromy method. Acta Arith, 2012, in pressGoogle Scholar
  82. 82.
    Fried M D, Jarden M. Field arithmetic. In: Ergebnisse der Mathematik III, vol. 11. Berlin: Springer-Verlag, 2004Google Scholar
  83. 83.
    Fried M D, MacRae R E. On the invariance of chains of fields. Illinois J Math, 1969, 13: 165–171zbMATHMathSciNetGoogle Scholar
  84. 84.
    Fried M D, Lidl R. On dickson polynomials and Rédei functions. In: Contributions to General Algebra 5. Vienna: Hölder-Pichler-Tempsky, 1987Google Scholar
  85. 85.
    Fried M D, Mezard A. Configuration Spaces for Wildly Ramified Covers. Providence, RI: Amer Math Soc, 2002, 353–376Google Scholar
  86. 86.
    Fried M D, Sacerdote G. Solving diophantine problems over all residue class fields of a number field. Ann of Math, 1976, 104: 203–233zbMATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    Fried M D, Völklein H. The inverse Galois problem and rational points on moduli spaces. Math Ann, 1991, 290: 771–800zbMATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Fried M D, Völklein H. The embedding problem over an Hilbertian PAC field. Ann of Math, 1992, 135: 469–481zbMATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Fried M D, Whitley R. Effective Branch Cycle Computation. PreprintGoogle Scholar
  90. 90.
    Fulton W. Fundamental Group of A Curve. Princeton: Princeton University Library, 1966Google Scholar
  91. 91.
    Garuti M. Prolongement de revêtements galoisiens en géométrie rigide. Comp Math, 1996, 104: 305–331zbMATHMathSciNetGoogle Scholar
  92. 92.
    Gorenstein D, Lyons R, Solomon R. The Classification of Finite Simple Groups. In: Mathematical Surveys and Monographs. Providence, RI: Amer Math Soc, 2006Google Scholar
  93. 93.
    Griffiths P. Periods of integrals on algebraic manifolds. Bull Amer Math Soc, 1970, 76: 228–296zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Grothendieck A. Géométrie formelle et géométrie algébraique. Séminaire Bourbaki, 1958/59Google Scholar
  95. 95.
    Guralnick R. Monodromy groups of coverings of curves. Galois groups and fundamental groups. Cambridge: Cambridge University Press, 2003Google Scholar
  96. 96.
    Guralnick R, Frohardt D, Magaard K. Genus 0 actions of groups of Lie rank 1. Proc Symp Pure Math, 2002, 70: 449–484MathSciNetGoogle Scholar
  97. 97.
    Guralnick R, Magaard K. On the minimal degree of a permutation representation. J Algebra, 1998, 207: 127–145zbMATHMathSciNetCrossRefGoogle Scholar
  98. 98.
    Guralnick R, Müller P. Exceptional polynomials of affine type. J Algebra, 1997, 194: 429–454zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    Guralnick R, Müller P, Saxl J. The rational function analoque of a question of Schur and exceptionality of permutations representations. Memoirs Amer Math Soc, 2003Google Scholar
  100. 100.
    Guralnick R, Shareshian J. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. Memoirs Amer Math Soc, 2007Google Scholar
  101. 101.
    Guralnick R, Thompson J G. Finite groups of genus zero. J Algebra, 1990, 131: 303–341zbMATHMathSciNetCrossRefGoogle Scholar
  102. 102.
    Guralnick R, Tucker T J, Zieve M. Exceptional covers and bijections on rational points. ArXiv: 0511276v2Google Scholar
  103. 103.
    Gusić I. Reducibility of f(x) − cf(y). Preprint, 2010Google Scholar
  104. 104.
    Hall M. The Theory of Groups. Boston: MacMillan, 1963Google Scholar
  105. 105.
    Halmos P. I Have a Photographic Memory. Providence, RI: Amer Math Soc, 1987zbMATHGoogle Scholar
  106. 106.
    Harbater D. Abhyankars conjecture on Galois groups over curves. Invent Math, 1994, 117: 1–25zbMATHMathSciNetCrossRefGoogle Scholar
  107. 107.
    Hales T. What is motivic measure? Bull Amer Math Soc, 2005, 42: 119–135zbMATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Hartshorne R. Algebraic Geometry. Berlin: Springer-Velag, 1977zbMATHGoogle Scholar
  109. 109.
    Hilbert D. Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J Reine Angew Math, 1892, 110: 104–129CrossRefGoogle Scholar
  110. 110.
    Isaacs I M. Algebra, a Graduate Course. Florence: Brooks/Cole Publishing, 1994Google Scholar
  111. 111.
    Kanev V. Spectral curves, simple Lie algebras, and Prym-Tjurin varieties. Proc Sympos Pure Math, 1987, 49: 627–645MathSciNetGoogle Scholar
  112. 112.
    Kiefe K. Sets definable over finite fields: Their zeta functions. Trans Amer Math Soc, 1976, 223: 45–59zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    Katz N M. Monodromy of families of curves: Applications of some results of Davenport-Lewis. Progress Math, 1981, 12: 171–195Google Scholar
  114. 114.
    Kriz I, Siegel P. Simple Groups at Play. Scientific American, 2008, 84–89Google Scholar
  115. 115.
    Lang S. Algebra. Boston: Addison-Wesley, 1971Google Scholar
  116. 116.
    Lenstra H W, Zieve M. A family of exceptional polynomials in characteristic 3. London Math Soc Lecture, 1996, 233: 209–218MathSciNetGoogle Scholar
  117. 117.
    LeVeque W J. On the equation ym = f(x). Acta Arith, 1964, 9: 209–219zbMATHMathSciNetGoogle Scholar
  118. 118.
    Lewis D J, Schinzel A. Quadratic diophantine equations with parameters. Acta Arith, 1980, 37: 133–141zbMATHMathSciNetGoogle Scholar
  119. 119.
    Lidl R, Mullen G L, Turnwald G. Dickson Polynomials. Essex: Longman Scientific, 1993zbMATHGoogle Scholar
  120. 120.
    Liebeck M, Praeger C, Saxl J. The maximal factorizations of the finite simple groups and their automorphism Groups. Memoirs Amer Math Soc, 1990Google Scholar
  121. 121.
    MacCluer C. On a conjecture of Davenport and Lewis concerning exceptional polynomials. Acta Arith, 1967, 12: 289–299zbMATHMathSciNetGoogle Scholar
  122. 122.
    Matthews R. Permutation polynomials over algebraic number fields. J Number Theory, 1984, 18: 249–260zbMATHMathSciNetCrossRefGoogle Scholar
  123. 123.
    Mazur B. Modular curves and the Eisenstein ideal. IHES Publ Math, 1977, 47: 33–186zbMATHMathSciNetGoogle Scholar
  124. 124.
    Merel L. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent Math, 1996, 124: 437–449zbMATHMathSciNetCrossRefGoogle Scholar
  125. 125.
    Mestre J F. Extensions régulières de ℚ(t) de groupe de Galois à n. J Algebra, 1990, 131: 483–495zbMATHMathSciNetCrossRefGoogle Scholar
  126. 126.
    Müller P. Primitive monodromy groups of polynomials. Contemp Math, 1995, 186: 385–401Google Scholar
  127. 127.
    Müller P. Reducibility behavior of polynomials with varying coefficients. Israel J Math, 1996, 94: 59–91zbMATHMathSciNetCrossRefGoogle Scholar
  128. 128.
    Müller P. Kronecker conjugacy of polynomials. Trans Amer Math Soc, 1998, 350: 1823–1850zbMATHMathSciNetCrossRefGoogle Scholar
  129. 129.
    Müller P. (A n, S n)-realizations by polynomials-on a question of Fried. Finite Fields Appl, 1998, 4: 465–468zbMATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    Müller P. The Degree 8 Examples in Davenport’s Problem. Preprint, 2006Google Scholar
  131. 131.
    Mumford D. The Red Book: Introduction to Algebraic Geometry. PreprintGoogle Scholar
  132. 132.
    Mumford D. Curves and Their Jacobians. Ann Arbor: Ann Arbor UM Press, 1976Google Scholar
  133. 133.
    Nicaise J. Relative Motives and the Theory of Pseudo-finite Fields. Int Math Res, 2010, 1–69Google Scholar
  134. 134.
    Pakovich F. Prime and composite Laurent polynomials. Bull Sci Math, 2009, 133: 693–732zbMATHMathSciNetCrossRefGoogle Scholar
  135. 135.
    Pakovich F. On the equation P(f) = Q(g), where P,Q are polynomials and f, g are entire functions. Amer J Math, 2010, 132Google Scholar
  136. 136.
    Pakovich F. Algebraic curves P(x)−Q(y) = 0 and functional equations. Complex Variables Elliptic Equations, 2011, 14: 199–213MathSciNetCrossRefGoogle Scholar
  137. 137.
    Picard E. Démonstration dun théorème général sur les fonctions uniformes liées par une relation algébrique. Acta Math, 1887, XI: 1–12MathSciNetCrossRefGoogle Scholar
  138. 138.
    Raynaud M. Revêtements de la droite affine en caractèristique p > 0 et conjecture d A bhyankar. Invent Math, 1994, 116: 425–462zbMATHMathSciNetCrossRefGoogle Scholar
  139. 139.
    Ritt J F. Prime and composite polynomials. Trans Amer Math Soc, 1922, 23: 51–66zbMATHMathSciNetCrossRefGoogle Scholar
  140. 140.
    Schinzel A. Reducibility of Polynomials. Int Cong Math Nice, 1971, 491–496Google Scholar
  141. 141.
    Schinzel A. Selected Topics on Polynomials. Ann Arbor: Arbor UM Press, 1982zbMATHGoogle Scholar
  142. 142.
    Serre J P. Abelian -adic representations and elliptic curves. Wellesley: A K Peters, 1998Google Scholar
  143. 143.
    Serre J P. Relèvements dans à n. CR Acad Sci Serial I, 1990, 111: 478–482Google Scholar
  144. 144.
    Serre J P. Topics in Galois Theory. Sudbury: Bartlett and Jones Publishers, 1992zbMATHGoogle Scholar
  145. 145.
    Siegel C L. Über einige Anwendungen diophantischer Approximationen. Abh Preus Akad Wiss Phys Math, 1929, 1: 14–67Google Scholar
  146. 146.
    Solomon R. A Brief History of the Classification of the Finite Simple Groups. Bull Amer Math Soc, 2001, 3: 315–352CrossRefGoogle Scholar
  147. 147.
    Springer G. Introduction to Riemann Surfaces. Boston: Addison-Wesley, 1957zbMATHGoogle Scholar
  148. 148.
    Tverberg H. A remark on Ehrenfeucht’s criterion for the irreducibility of polynomials. Prace Mat, 1963/64, 8: 117–118MathSciNetGoogle Scholar
  149. 149.
    Tverberg H. A Study in Irreducibility of Polynomials. Ph.D. Thesis, Univ Bergen, 1968Google Scholar
  150. 150.
    Turnwald G. On Schur’s conjecture. J Austral Math Soc Ser A, 1995, 58: 312–357zbMATHMathSciNetCrossRefGoogle Scholar
  151. 151.
    van der Waerden B L. Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen. Math Ann, 1935, 111: 731–733MathSciNetCrossRefGoogle Scholar
  152. 152.
    van der Poorten A J. The growth conditions for recurrence sequences. UnpublishedGoogle Scholar
  153. 153.
    Vetro F. Irreducibility of Hurwitz spaces of coverings with one special fiber and monodromy group a Weyl group of type D d. Manuscripta Math, 2008, 125: 353–368zbMATHMathSciNetCrossRefGoogle Scholar
  154. 154.
    Vetro F. On Hurwitz spaces of coverings with one special fiber. Pacific J Math, 2009, 240: 383–398zbMATHMathSciNetCrossRefGoogle Scholar
  155. 155.
    Vojta P. Diophantine Approximation and Value Distribution Theory. Berlin: Springer-Verlag, 1987Google Scholar
  156. 156.
    Völklein H. Groups as Galois Groups. In: Cambridge Studies in Advance Mathematics. Cambridge: Cambridge University Press, 1996Google Scholar
  157. 157.
    Weil A. L’arithmetique sur les courbes algébriques. Acta Math, 1928, 52: 281–315MathSciNetCrossRefGoogle Scholar
  158. 158.
    Wohlfahrt K. An extension of F. Klein’s level concept. Illinois J Math, 1964, 8: 529–535zbMATHMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at IrvineIrvineUSA

Personalised recommendations