Skip to main content
Log in

Leibniz seminorms and best approximation from C*-subalgebras

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We show that if B is a C*-subalgebra of a C*-algebra A such that B contains a bounded approximate identity for A, and if L is the pull-back to A of the quotient norm on A/B, then L is strongly Leibniz. In connection with this situation we study certain aspects of best approximation of elements of a unital C*-algebra by elements of a unital C*-subalgebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruchow E, Mata-Lorenzo L E, Mendoza A, et al. Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension. Linear Algebra Appl, 2009, 430: 1906–1928. MR 2503942 (2010b:46133)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arveson W. Interpolation problems in nest algebras. J Funct Anal, 1975, 20: 208–233. MR 0383098 (52 #3979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhatia R, Šemrl P. Orthogonality of matrices and some distance problems. Linear Algebra Appl, 1999, 287: 77–85. MR 1662861 (99k:15042)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackadar B. Operator Algebras. Theory of C*-Algebras and von Neumann Algebras, Operator Algebras and Noncommutative Geometry, III. Encyclopaedia of Mathematical Sciences, vol. 122. Berlin: Springer-Verlag, 2006. MR2188261 (2006k:46082)

    Google Scholar 

  5. Choi M D, Li C K. The ultimate estimate of the upper norm bound for the summation of operators. J Funct Anal, 2006, 232: 455–476. MR 2200742 (2006j:47010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen E. Perturbations of operator algebras II. Indiana Univ Math J, 1977, 26: 891–904. MR 0512368 (58 #23628b)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis P J. Interpolation and Approximation. New York-Toronto-London: Blaisdell Publishing Co. Ginn and Co., 1963. MR 0157156 (28 #393)

    MATH  Google Scholar 

  8. Douglas R G. Banach Algebra Techniques in Operator Theory, 2nd ed. Graduate Texts in Mathematics, vol. 179. New York: Springer-Verlag, 1998. MR 1634900 (99c:47001)

    Book  MATH  Google Scholar 

  9. Durán C E, Mata-Lorenzo M E, Recht L. Metric geometry in homogeneous spaces of the unitary group of a C*-algebra II. Geodesics joining fixed endpoints. Integral Equations Operator Theory, 2005, 53: 33–50. MR 2183595 (2007a:58006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gajendragadkar P. Norm of a derivation on a von Neumann algebra. Trans Amer Math Soc, 1972, 170: 165–170. MR0305090 (46 #4220)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garkavi A L. On the Čebyšev center and convex hull of a set. Uspehi Mat Nauk, 1964, 19: 139–145. MR 0175035 (30 #5221)

    MathSciNet  MATH  Google Scholar 

  12. Hadwin D, Larson D R, Timotin D. Approximation theory and matrix completions. Linear Algebra Appl, 2004, 377: 165–179. MR 2021609 (2004j:47028)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kadison R V, Ringrose J R. Fundamentals of the Theory of Operator Algebras, vol. I. Elementary Theory, Reprint of the 1983 original. Providence, RI: American Mathematical Society, 1997. MR 98f:46001a

    Google Scholar 

  14. Kadison R V, Ringrose J R. Fundamentals of the Theory of Operator Algebras, vol. III. Special Topics, Elementary Theory — An Exercise Approach. Boston, MA: Birkhäuser Boston Inc, 1991. MR 1134132 (92m:46084)

    Google Scholar 

  15. Kadison R V, Ringrose J R. Fundamentals of the Theory of Operator Algebras, vol. II. Graduate Studies in Mathematics, vol. 16. Advanced Theory, Corrected reprint of the 1986 original. Providence, RI: American Mathematical Society, 1997. MR 1468230 (98f:46001b)

    Google Scholar 

  16. Pedersen G K. Čebyšev subspaces of C*-algebras. Math Scand, 1979, 45: 147–156. MR 567440 (81i:46077)

    MathSciNet  MATH  Google Scholar 

  17. Rieffel M A. Vector bundles and Gromov-Hausdorff distance. J K-Theory, 2010, 5: 39–103. arXiv:math.MG/0608266.

    Article  MathSciNet  MATH  Google Scholar 

  18. Rieffel M A. Leibniz seminorms for “Matrix algebras converge to the sphere”. Quanta of Maths, Clay Mathematics Proceedings, vol. 11. Providence, RI: American Mathematical Society, 2011, 543–578. arXiv:0707.3229.

    Google Scholar 

  19. Robertson A G. Best approximation in von Neumann algebras. Math Proc Cambridge Philos Soc, 1977, 81: 233–236. MR 0473860 (57 #13519)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson A G, Yost D. Chebyshev subspaces of operator algebras. J London Math Soc, 1979, 19: 523–531. MR 540068 (80j:46097)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudin W. Functional Analysis, 2nd ed. International Series in Pure and Applied Mathematics. New York: McGraw-Hill Inc, 1991. MR 1157815 (92k:46001)

    MATH  Google Scholar 

  22. Singer I. Best approximation in normed linear spaces by elements of linear subspaces. Die Grundlehren der mathematischen Wissenschaften, Band 171. Bucharest: Publishing House of the Academy of the Socialist Republic of Romania, 1970. MR 0270044 (42 #4937)

    Google Scholar 

  23. Stampfli J G. The norm of a derivation. Pacific J Math, 1970, 33: 737–747. MR 0265952 (42 #861)

    MathSciNet  MATH  Google Scholar 

  24. Thirring W. Quantum Mechanics of Atoms and Molecules. A Course in Mathematical Physics, vol. 3. Translated from German by Evans M. Harrell, Lecture Notes in Physics, 141. New York: Springer-Verlag, 1981. MR 625662 (84m:81006)

    Google Scholar 

  25. Wu W. Non-commutative metrics on matrix state spaces. J Ramanujan Math Soc, 2005, 20: 215–254. arXiv: math.OA/0411475. MR 2181130

    MathSciNet  MATH  Google Scholar 

  26. Wu W. Non-commutative metric topology on matrix state space. Proc Amer Math Soc, 2006, 134: 443–453. arXiv: math.OA/0410587. MR 2176013 (2006f:46072)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu W. Quantized Gromov-Hausdorff distance. J Funct Anal, 2006, 238: 58–98, arXiv:math.OA/0503344. MR 2234123

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Rieffel.

Additional information

In celebration of the successful completion by Richard V. Kadison of 85 circumnavigations of the sun

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieffel, M.A. Leibniz seminorms and best approximation from C*-subalgebras. Sci. China Math. 54, 2259–2274 (2011). https://doi.org/10.1007/s11425-011-4318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4318-2

Keywords

MSC(2000)

Navigation