Abstract
In this paper, we develop a correction operator for the canonical interpolation operator of the Adini element. We use this new correction operator to analyze the discrete eigenvalues of the Adini element method for the fourth order elliptic eigenvalue problem in the three dimensions. We prove that the discrete eigenvalues are smaller than the exact ones.
Similar content being viewed by others
References
Adolfsson V. The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains. J Funct Anal, 1998, 159: 137–190
Armentano M G, Duran R G. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electronic Trans Numer Anal, 2004, 17: 93–101
Bergh J, Löfström J. Interpolation Spaces, An Introduction. Berlin-Heidelberg: Springer-Verlag, 1976
Brenner S C, Scott L R. The Mathematical Theorey of Finite Element Methods. Berlin: Springer-Verlag, 1996
Gupta C P, Kwong Y C. Biharmonic eigen-value problems and L p estimates. Int J Math Math Sci, 1990, 13: 469–480
Hu J. Analysis for a kind of meshless Galerkin method and the lower approximation of eigenvalues (in Chinese). Master Thesis. Xiangtan: Xiangtan University, 2001
Hu J, Huang Y Q, Lin Q. The lower bounds for eigenvalues of elliptic operators by nonconforming finite element methods. Preprint, 2010
Hu J, Huang Y Q, Shen H M, The lower approximation of eigenvalue by lumped mass finite element methods. J Comput Math, 2004, 22: 545–556
Li Y A. Lower approximation of eigenvalue by the nonconforming finite element method. Math Numer Sin, 2008, 30: 195–200
Lin Q, Huang H T, Li Z C. New expansions of numerical eigenvalues for −Δu = λρu by nonconforming elements. Math Comp, 2008, 77: 2061–2084
Lin Q, Huang H T, Li Z C. New expansions of numerical eigenvalues by Wilson’s element. J Comput Appl Math, 2009, 225: 213–226
Liu H P, Yan N N. Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chinese J Numer Meth Comput Appl, 2005, 2: 81–91
Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer Math, 1979, 33: 23–42
Shi Z C, Wang M. The Finite Element Method. Beijing: Science Press, 2010
Yang Y D. A posteriori error estimates in Adini finite element for eigenvalue problems. J Comput Math, 2000, 18: 413–418
Yang Y D, Bi H. Lower spectral bounds by Wilson’s brick discretization. Appl Numer Math, 2010, 60: 782–787
Yang Y D, Lin F B, Zhang Z M. N-simplex Crouzeix-Raviart element for second order elliptic/eigenvalue problems. Internat J Numer Anal Model, 2009, 6: 615–626
Yang Y D, Zhang Z M, Lin F B. Eigenvalue approximation from below using nonforming finite elements. Sci China Math, 2010, 53: 137–150
Zhang Z M, Yang Y D, Chen Z. Eigenvalue approximation from below by Wilson’s elements. Chinese J Numer Math Appl, 2007, 29: 81–84
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, J., Huang, Y. The correction operator for the canonical interpolation operator of the Adini element and the lower bounds of eigenvalues. Sci. China Math. 55, 187–196 (2012). https://doi.org/10.1007/s11425-011-4267-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-011-4267-9