Skip to main content
Log in

The correction operator for the canonical interpolation operator of the Adini element and the lower bounds of eigenvalues

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a correction operator for the canonical interpolation operator of the Adini element. We use this new correction operator to analyze the discrete eigenvalues of the Adini element method for the fourth order elliptic eigenvalue problem in the three dimensions. We prove that the discrete eigenvalues are smaller than the exact ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson V. The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains. J Funct Anal, 1998, 159: 137–190

    Article  MATH  MathSciNet  Google Scholar 

  2. Armentano M G, Duran R G. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electronic Trans Numer Anal, 2004, 17: 93–101

    MATH  MathSciNet  Google Scholar 

  3. Bergh J, Löfström J. Interpolation Spaces, An Introduction. Berlin-Heidelberg: Springer-Verlag, 1976

    Book  MATH  Google Scholar 

  4. Brenner S C, Scott L R. The Mathematical Theorey of Finite Element Methods. Berlin: Springer-Verlag, 1996

    Google Scholar 

  5. Gupta C P, Kwong Y C. Biharmonic eigen-value problems and L p estimates. Int J Math Math Sci, 1990, 13: 469–480

    Article  MATH  MathSciNet  Google Scholar 

  6. Hu J. Analysis for a kind of meshless Galerkin method and the lower approximation of eigenvalues (in Chinese). Master Thesis. Xiangtan: Xiangtan University, 2001

    Google Scholar 

  7. Hu J, Huang Y Q, Lin Q. The lower bounds for eigenvalues of elliptic operators by nonconforming finite element methods. Preprint, 2010

  8. Hu J, Huang Y Q, Shen H M, The lower approximation of eigenvalue by lumped mass finite element methods. J Comput Math, 2004, 22: 545–556

    MATH  MathSciNet  Google Scholar 

  9. Li Y A. Lower approximation of eigenvalue by the nonconforming finite element method. Math Numer Sin, 2008, 30: 195–200

    MATH  MathSciNet  Google Scholar 

  10. Lin Q, Huang H T, Li Z C. New expansions of numerical eigenvalues for −Δu = λρu by nonconforming elements. Math Comp, 2008, 77: 2061–2084

    Article  MATH  MathSciNet  Google Scholar 

  11. Lin Q, Huang H T, Li Z C. New expansions of numerical eigenvalues by Wilson’s element. J Comput Appl Math, 2009, 225: 213–226

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu H P, Yan N N. Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chinese J Numer Meth Comput Appl, 2005, 2: 81–91

    MathSciNet  Google Scholar 

  13. Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer Math, 1979, 33: 23–42

    Article  MATH  MathSciNet  Google Scholar 

  14. Shi Z C, Wang M. The Finite Element Method. Beijing: Science Press, 2010

    Google Scholar 

  15. Yang Y D. A posteriori error estimates in Adini finite element for eigenvalue problems. J Comput Math, 2000, 18: 413–418

    MATH  MathSciNet  Google Scholar 

  16. Yang Y D, Bi H. Lower spectral bounds by Wilson’s brick discretization. Appl Numer Math, 2010, 60: 782–787

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang Y D, Lin F B, Zhang Z M. N-simplex Crouzeix-Raviart element for second order elliptic/eigenvalue problems. Internat J Numer Anal Model, 2009, 6: 615–626

    MathSciNet  Google Scholar 

  18. Yang Y D, Zhang Z M, Lin F B. Eigenvalue approximation from below using nonforming finite elements. Sci China Math, 2010, 53: 137–150

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang Z M, Yang Y D, Chen Z. Eigenvalue approximation from below by Wilson’s elements. Chinese J Numer Math Appl, 2007, 29: 81–84

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Huang, Y. The correction operator for the canonical interpolation operator of the Adini element and the lower bounds of eigenvalues. Sci. China Math. 55, 187–196 (2012). https://doi.org/10.1007/s11425-011-4267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4267-9

Keywords

MSC(2010)

Navigation