Skip to main content
Log in

On some mathematical aspects of the Heisenberg relation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Heisenberg commutation relation, QP−PQ = iħI, is the most fundamental relation of quantum mechanics. Heisenberg’s encoding of the ad-hoc quantum rules in this simple relation embodies the characteristic indeterminacy and uncertainty of quantum theory. Representations of the Heisenberg relation in various mathematical structures are discussed. In particular, after a discussion of unbounded operators affiliated with finite von Neumann algebras, especially, factors of Type II1, we answer the question of whether or not the Heisenberg relation can be realized with unbounded self-adjoint operators in the algebra of operators affiliated with a factor of type II1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixmier J. Les Algèbres d’Opérateurs dans l’Espace Hilbertien. 2nd ed. Paris: Gauthier-Villars, 1957

    MATH  Google Scholar 

  2. Dirac P A M. The Principles of Quantum Mechanics. 3rd ed. Oxford: Clarendon Press, 1947

    MATH  Google Scholar 

  3. Heisenberg W. The Physical Principles of the Quantum Theory. Chicago: University of Chicago Press, 1930

    MATH  Google Scholar 

  4. Hille E, Phillips R S. Functional Analysis and Semi-Groups, vol. 31. Providence, RI: Amer Math Soc Colloq Publ, 1957

    Google Scholar 

  5. Kadison R V, Ringrose J R. Fundamentals of the Theory of Operator Algebras. vols. I, II and III. New York: Academic Press, 1983, 1986, 1991

    Google Scholar 

  6. Kadison R V. Transformations of states in operator theory and dynamics. Topology, 1965, 3(Suppl.2): 177–198

    Article  MathSciNet  Google Scholar 

  7. Kadison R V. Operator algebra — an overview. Proc Sympos Pure Math, 1990, 50: 61–89

    MathSciNet  Google Scholar 

  8. Kadison R V. Algebras of unbounded functions and operators. Expo Math, 1986, 4: 3–33

    MathSciNet  MATH  Google Scholar 

  9. Mackey G W. Quantum mechanics and Hilbert space. Amer Math Month, 1957, 8: 45–57

    Article  MathSciNet  Google Scholar 

  10. Murray F J, von Neumann J. On rings of operators. Ann of Math, 1936, 37: 116–229

    Article  MathSciNet  Google Scholar 

  11. Murray F J, von Neumann J. On rings of operators II. Trans Amer Math Soc, 1937, 41: 208–248

    Article  MathSciNet  Google Scholar 

  12. Murray F J, von Neumann J. On rings of operators IV. Ann of Math, 1943, 44: 716–808

    Article  MathSciNet  MATH  Google Scholar 

  13. Stone M H. On one-parameter unitary groups in Hilbert space. Ann of Math, 1932, 33: 643–648

    Article  MathSciNet  Google Scholar 

  14. von Neumann J. Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math Ann, 1929, 102: 370–427

    Article  MATH  Google Scholar 

  15. von Neumann J. On rings of operators III. Ann of Math, 1940, 41: 94–161

    Article  MathSciNet  Google Scholar 

  16. von Neumann J. Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press, 1955

    MATH  Google Scholar 

  17. von Neumann J. Die Eindeutigkeit der Schrödingerschen Operatoren. Math Ann, 1931, 570–578

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu.

Additional information

Dedicated to Professor Richard V. Kadison on the Occasion of his 85th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z. On some mathematical aspects of the Heisenberg relation. Sci. China Math. 54, 2427–2452 (2011). https://doi.org/10.1007/s11425-011-4266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4266-x

Keywords

MSC(2000)

Navigation