Skip to main content
Log in

DG algebra structures on AS-regular algebras of dimension 2

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934–2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DG A-module with a free underlying graded A#-module may not be semi-projective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin M, Schelter W F. Graded algebras of global dimension 3. Adv Math, 1987, 66: 171–216

    Article  MathSciNet  MATH  Google Scholar 

  2. Avramov L L, Buchweitz R O, Iyengar S B, et al. Homology of perfect complexes. Adv Math, 2010, 223: 1731–1781

    Article  MathSciNet  MATH  Google Scholar 

  3. Avramov L L, Foxby H V, Halperin S. Differential Graded Homological Algebra. In preparation

  4. Bezrukavnikov R. Koszul DG-algebras arising from configuration spaces. Geom Funct Anal, 1994, 4: 119–135

    Article  MathSciNet  MATH  Google Scholar 

  5. Félix Y, Halperin S, Thomas J C. Rational Homotopy Theory. In: Grad Texts in Math, 205. Berlin: Springer, 2000

    Google Scholar 

  6. Félix Y, Halperin S, Thomas J C. Gorenstein spaces. Adv Math, 1988, 71: 92–112

    Article  MATH  Google Scholar 

  7. Gammelin H. Gorenstein space with nonzero evaluation map. Trans Amer Math Soc, 1999, 351: 3433–3440

    Article  MathSciNet  MATH  Google Scholar 

  8. He J W, Wu Q S. Koszul differential graded algebras and BGG correspondence. J Algebra, 2008, 320: 2934–2962

    Article  MathSciNet  MATH  Google Scholar 

  9. Irving R S. Prime ideals of Ore extensions over commutative rings. J Algebra, 1979, 58: 399–423

    Article  MathSciNet  MATH  Google Scholar 

  10. Jørgensen P. Linear free resolution over non-commutative graded algebras. Compositio Math, 2004, 140: 1053–1058

    Article  Google Scholar 

  11. Keller B. Deriving DG categories. Ann Sci École Norm Sup, 1994, 27: 63–102

    MATH  Google Scholar 

  12. Kontsevich M, Soibelman Y. Notes on A -algebras, A -categories and non-commutative geometry I. arxiv: math. RA/0606241 v2

  13. Mao X F. Global dimension for connected differential graded algebra. Chinese Ann Math Ser A, 2009, 30: 359–376

    MathSciNet  MATH  Google Scholar 

  14. Mao X F, Wu Q S. Homological invariants for connected DG algebra. Comm Algebra, 2008, 36: 3050–3072

    Article  MathSciNet  MATH  Google Scholar 

  15. Mao X F, Wu Q S. Compact DG modules and Gorenstein DG algebra. Sci China Ser A, 2009, 52: 648–676

    Article  MathSciNet  MATH  Google Scholar 

  16. Priddy S. Koszul resolutions. Trans Amer Math Soc, 1970, 152: 39–60

    Article  MathSciNet  MATH  Google Scholar 

  17. Polishchuk A, Positselski L. Quadratic Algebras. University Lecture Series 37. Providence, RI: Amer Math Soc, 2005

    MATH  Google Scholar 

  18. Shklyarov D. On Serre duality for compact homologically smooth DG algebras. arxiv: math. RA/0702590 v1

  19. Shklyarov D. Hirzebruch-Riemann-Roch theorem for DG algebras. arxiv: math. KT/0710.1937 v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueFeng Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X. DG algebra structures on AS-regular algebras of dimension 2. Sci. China Math. 54, 2235–2248 (2011). https://doi.org/10.1007/s11425-011-4256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4256-z

Keywords

MSC(2010)

Navigation