Abstract
Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934–2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DG A-module with a free underlying graded A#-module may not be semi-projective.
Similar content being viewed by others
References
Artin M, Schelter W F. Graded algebras of global dimension 3. Adv Math, 1987, 66: 171–216
Avramov L L, Buchweitz R O, Iyengar S B, et al. Homology of perfect complexes. Adv Math, 2010, 223: 1731–1781
Avramov L L, Foxby H V, Halperin S. Differential Graded Homological Algebra. In preparation
Bezrukavnikov R. Koszul DG-algebras arising from configuration spaces. Geom Funct Anal, 1994, 4: 119–135
Félix Y, Halperin S, Thomas J C. Rational Homotopy Theory. In: Grad Texts in Math, 205. Berlin: Springer, 2000
Félix Y, Halperin S, Thomas J C. Gorenstein spaces. Adv Math, 1988, 71: 92–112
Gammelin H. Gorenstein space with nonzero evaluation map. Trans Amer Math Soc, 1999, 351: 3433–3440
He J W, Wu Q S. Koszul differential graded algebras and BGG correspondence. J Algebra, 2008, 320: 2934–2962
Irving R S. Prime ideals of Ore extensions over commutative rings. J Algebra, 1979, 58: 399–423
Jørgensen P. Linear free resolution over non-commutative graded algebras. Compositio Math, 2004, 140: 1053–1058
Keller B. Deriving DG categories. Ann Sci École Norm Sup, 1994, 27: 63–102
Kontsevich M, Soibelman Y. Notes on A ∞-algebras, A ∞-categories and non-commutative geometry I. arxiv: math. RA/0606241 v2
Mao X F. Global dimension for connected differential graded algebra. Chinese Ann Math Ser A, 2009, 30: 359–376
Mao X F, Wu Q S. Homological invariants for connected DG algebra. Comm Algebra, 2008, 36: 3050–3072
Mao X F, Wu Q S. Compact DG modules and Gorenstein DG algebra. Sci China Ser A, 2009, 52: 648–676
Priddy S. Koszul resolutions. Trans Amer Math Soc, 1970, 152: 39–60
Polishchuk A, Positselski L. Quadratic Algebras. University Lecture Series 37. Providence, RI: Amer Math Soc, 2005
Shklyarov D. On Serre duality for compact homologically smooth DG algebras. arxiv: math. RA/0702590 v1
Shklyarov D. Hirzebruch-Riemann-Roch theorem for DG algebras. arxiv: math. KT/0710.1937 v1
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mao, X. DG algebra structures on AS-regular algebras of dimension 2. Sci. China Math. 54, 2235–2248 (2011). https://doi.org/10.1007/s11425-011-4256-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-011-4256-z