Skip to main content
Log in

Fourier coefficients of Zygmund functions and analytic functions with quasiconformal deformation extensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

An open problem is to characterize the Fourier coefficients of Zygmund functions. This problem was also explicitly suggested by Nag and later by Teo and Takhtajan-Teo in the course of study of the universal Teichmüller space. By a complex analysis approach, we give a characterization for the Fourier coefficients of a Zygmund function by a quadratic form. Some related topics are also discussed, including those analytic functions with quasiconformal deformation extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L V. Lectures on Quasiconformal Mappings. Princeton: Van Nostrand, 1966

    MATH  Google Scholar 

  2. Ahlfors L V. Quasiconformal deformations and mappings in R n . J Anal Math, 1976, 30: 74–97

    Article  MathSciNet  MATH  Google Scholar 

  3. Duren P. Theory of H p Spaces. New York: Academic Press, 1970

    MATH  Google Scholar 

  4. Garnett J B. Bounded Analytic Functions. New York: Academic Press, 1981

    MATH  Google Scholar 

  5. Gardiner F P, Harvey J. Universal Teichmüller space. In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 1. Amsterdam: North-Holland, 2002, 457–492

    Google Scholar 

  6. Gardiner F P, Lakic N. Quasiconformal Teichmüller Theory. Math Surveys Monogr, 76. Providence, RI: Amer Math Soc, 2000

    MATH  Google Scholar 

  7. Gardiner F P, Sullivan D. Symmetric structures on a closed curve. Amer J Math, 1992, 114: 683–736

    Article  MathSciNet  MATH  Google Scholar 

  8. Krushkal S L. The Grunsky coefficient conditions. Siberian Math J, 1987, 28: 104–110

    Article  MATH  Google Scholar 

  9. Krushkal S L. Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings. Comment Math Helv, 1989, 64: 650–660

    Article  MathSciNet  MATH  Google Scholar 

  10. Lehto O. Univalent Functions and Teichmüller Spaces. New York: Springer-Verlag, 1986

    Google Scholar 

  11. Liu Y, Shen Y. Analytic function with quasiconformal deformation extensions and its Grunsky type inequality. J Suzhou Univ (Nat Sci Ed), 2009, 25: 13–15

    MathSciNet  Google Scholar 

  12. Nag S. The Complex Analytic Theory of Teichmüller Spaces. New York: Wiley-Interscience, 1988

    MATH  Google Scholar 

  13. Nag S. On the tangent space to the universal Teichmüller space. Ann Acad Sci Fenn Math, 1993, 18: 377–393

    MathSciNet  MATH  Google Scholar 

  14. Nag S, Verjovsky A. Diff(S 1) and the Teichmüller space. Commun Math Phys, 1990, 130: 123–138

    Article  MathSciNet  MATH  Google Scholar 

  15. Pommerenke Ch. Boundary Behaviour of Conformal Maps. Berlin: Springer-Verlag, 1992

    MATH  Google Scholar 

  16. Reich E. Extremal extensions from the circle to the disk. In: Quasiconformal Mappings and Analysis, A Collection of Papers Honoring F W Gehring. Berlin: Springer, 1998, 321–335

    Google Scholar 

  17. Reich E, Chen J. Extensions with bounded \(\bar \partial \)-derivative. Ann Acad Sci Fenn Math 1991, 16: 377–389

    MathSciNet  MATH  Google Scholar 

  18. Reimann M. Ordinary differential equations and quasiconformal mappings. Invent Math, 1976, 33: 247–270

    Article  MathSciNet  MATH  Google Scholar 

  19. Schur I. Ein Satz über quadratische Formen mit komplexen Koeffizienten. Amer J Math, 1945, 67: 472–480

    Article  MathSciNet  MATH  Google Scholar 

  20. Teo L. The Velling-Kirillov metric on the universal Teichmüller curve. J Anal Math, 2004, 93: 271–307

    Article  MathSciNet  MATH  Google Scholar 

  21. Takhtajan L, Teo L. Weil-Petersson Metric on the Universal Teichmüller Space. Mem Amer Math Soc, 183. Providence, RI: Amer Math Soc, 2006

    Google Scholar 

  22. Zygmund A. Smooth functions. Duke Math J, 1945, 12: 47–76

    Article  MathSciNet  MATH  Google Scholar 

  23. Zygmund A. Zygmund Trigonometric Series. Cambridge: Cambridge Univ Press, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuLiang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y. Fourier coefficients of Zygmund functions and analytic functions with quasiconformal deformation extensions. Sci. China Math. 55, 607–624 (2012). https://doi.org/10.1007/s11425-011-4236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4236-3

Keywords

MSC(2010)

Navigation