Skip to main content
Log in

New optimality conditions for average-payoff continuous-time Markov games in Polish spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper concerns two-person zero-sum games for a class of average-payoff continuous-time Markov processes in Polish spaces. The underlying processes are determined by transition rates that are allowed to be unbounded, and the payoff function may have neither upper nor lower bounds. We use two optimality inequalities to replace the so-called optimality equation in the previous literature. Under more general conditions, these optimality inequalities yield the existence of the value of the game and of a pair of optimal stationary strategies. Under some additional conditions we further establish the optimality equation itself. Finally, we use several examples to illustrate our results, and also to show the difference between the conditions in this paper and those in the literature. In particular, one of these examples shows that our approach is more general than all of the existing ones because it allows nonergodic Markov processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman E, Hordijk A, Spieksma F M. Contraction conditions for average and α-discount optimality in countable state Markov games with unbounded rewards. Math Meth Oper Res, 1997, 22: 588–618

    MATH  MathSciNet  Google Scholar 

  2. Anderson W J. Continuous-Time Markov Chains. New York: Springer-Verlag, 1991

    MATH  Google Scholar 

  3. Bayraktar E, Poor V H. Stochastic differential games in a non-Markovian setting. SIAM J Control Optim, 2005, 43: 1737–1756

    Article  MATH  MathSciNet  Google Scholar 

  4. Buckdahn R, Cardaliaguet P, Rainer C. Nash equilibrium payoffs for nonzero-sum stochastic differential games. SIAM J Control Optim, 2004, 43: 624–642

    Article  MATH  MathSciNet  Google Scholar 

  5. Borkar V S, Ghosh M K. Denumerable state stochastic games with limiting average payoff. J Optim Theory Appl, 1993, 76: 539–560

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004

    Book  MATH  Google Scholar 

  7. Down D, Meyn S P, Tweedie R L. Exponential and uniform ergodicity of Markov processes. Ann Probab, 1995, 23: 1671–1691

    Article  MATH  MathSciNet  Google Scholar 

  8. Doshi B T. Continuous-time control of Markov processes on an arbitrary state space: average reward criterion. Stoch Proc Appl, 1976, 4: 55–77

    Article  MATH  MathSciNet  Google Scholar 

  9. Feller W. On the integro-differential equations of purely discontinuous Markoff processes. Trans Amer Math Soc, 1940, 48: 488–515

    Article  MATH  MathSciNet  Google Scholar 

  10. Gihman I I, Skorohod A V. Controlled Stochastic Processes. New York: Springer-Verlag, 1979

    Google Scholar 

  11. Guo X P. Continuous-time Markov decision processes with discounted rewards: the case of Polish spaces. Math Oper Res, 2007, 32: 73–87

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo X P, Hernández-Lerma O. Zero-sum games for continuous-time Markov chains with unbounded transition and average payoff rates. J Appl Probab, 2003, 40: 327–345

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo X P, Hernández-Lerma O. Zero-sum games for continuous-time jump Markov processes in Polish spaces: discounted payoffs. Adv Appl Probab, 2007, 39: 645–668

    Article  MATH  Google Scholar 

  14. Guo X P, Ye L E. New discount and average optimality conditions for continuous-time Markov decision process. Adv Appl Probab, 2010, 42: 953–985

    Article  MATH  Google Scholar 

  15. Hamadène S. Mixed zero-sum stochastic differential game and American game options. SIAM J Control Optim, 2006, 45: 496–518

    Article  MathSciNet  Google Scholar 

  16. Küenle H U, Schurath R. The optimality equation and -optimal strategies in Markov games with average reward criterion. Math Meth Oper Res, 2002, 56: 451–471

    MATH  Google Scholar 

  17. Hernández-Lerma O, Lasserre J B. Zero-sum stochastic games in Borel spaces: average payoff criterion. SIAM J Control Optim, 2001, 39: 1520–1539

    Article  MATH  Google Scholar 

  18. Hernández-Lerma O, Lasserre J B. Further Topics on Discrete-Time Markov Control Processes. New York: Springer-Verlag, 1999

    MATH  Google Scholar 

  19. Jaśskiewicz A. Zero-sum semi-Markov games. SIAM J Control Optim, 2002, 41: 723–739

    Article  MathSciNet  Google Scholar 

  20. Jaśkiewicz A, Nowak A S. Zero-sum ergodic stochastic games with Feller transition probabilities. SIAM J Control Optim, 2006, 45: 73–789

    Google Scholar 

  21. Jaśkiewicz A, Nowak A S. On the optimality equation for zero-sum ergodic stochastic games. Math Meth Oper Res, 2001, 54: 291–301

    Article  MATH  Google Scholar 

  22. Lal A K, Sinha S. Zero-sum two-person semi-Markov games. J Appl Probab, 1992, 29: 56–72

    Article  MATH  MathSciNet  Google Scholar 

  23. Lund R B, Meyn S P, Tweedie R L. Computable exponential convergence rates for stochastically ordered Markov processes. Ann Appl Probab, 1996, 6: 218–237

    Article  MATH  MathSciNet  Google Scholar 

  24. Nowak A S. Measurable selection theorems for minimax stochastic optimization problems. SIAM J Control Optim, 1985, 23: 466–476

    Article  MATH  MathSciNet  Google Scholar 

  25. Nowak A S. Optimal strategies in a class of zero-sum ergodic stochastic games. Math Meth Oper Res, 1999, 50: 399–419

    Article  MATH  Google Scholar 

  26. Nowak A S. Some remarks on equilibria in semi-Markov games. Appl Math (Warsaw), 2000, 27: 385–394

    MATH  MathSciNet  Google Scholar 

  27. Orey S. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. London: Van Nostrand Reinhold, 1971

    MATH  Google Scholar 

  28. Polowczuk W. Nonzero-sum semi-Markov games with countable state spaces. Appl Math (Warsaw), 2000, 27: 395–402

    MATH  MathSciNet  Google Scholar 

  29. Rao M M. Stochastic Processes: General Theory. Dordrecht: Kluwer Academic Publishers, 1995

    MATH  Google Scholar 

  30. Tanaka K, Wakata K. On continuous time Markov games with the expected average reward criterion. Sci Rep Niigata Univ Ser A, 1977, 14: 15–24

    MATH  Google Scholar 

  31. Vega-Amaya O. Zero-sum average semi-Markov games: fixed-point solutions of the Shapley equation. SIAM J Control Optim, 2003, 42: 1876–1894

    Article  MATH  MathSciNet  Google Scholar 

  32. Williams D. Diffusions, Markov Processes, and Martingales. Volume 1: Foundations. Chichester: Wiley, 1979

    Google Scholar 

  33. Yeung D W K. Solution mechanisms for cooperative stochastic differential games. Int Game Theory Rev, 2006, 8: 309–326

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianPing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Hernández-Lerma, O. New optimality conditions for average-payoff continuous-time Markov games in Polish spaces. Sci. China Math. 54, 793–816 (2011). https://doi.org/10.1007/s11425-011-4186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4186-9

Keywords

MSC(2000)

Navigation