Skip to main content
Log in

The invariance principle for fractionally integrated processes with strong near-epoch dependent innovations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we show the invariance principle for the partial sum processes of fractionally integrated processes, otherwise known as I(d + m) processes, where |d| < 1/2 and m is a nonnegative integer, with strong near-epoch dependent innovations. The results are applied to the test of unit root. The conditions given improve previous results in the literature concerning fractionally integrated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avram F, Taqqu M S. Noncentral limit theorems and Appell polynomials. Ann Probab, 1987, 15: 767–775

    Article  MATH  MathSciNet  Google Scholar 

  2. Billingsley P. Convergence of Probability of Measures. New York: John Wiley and Sons Inc, 1968

    MATH  Google Scholar 

  3. Chan N H, Terrin N. Inferences for unstable long-memory processes with applications to fractional unit root autoregressions. Ann Statist, 1995, 23: 1662–1683

    Article  MATH  MathSciNet  Google Scholar 

  4. Davydov Y A. The invariance principle for stationary processes. Theory Probab Appl, 1970, 15: 487–498

    Article  MathSciNet  Google Scholar 

  5. Davidson J. Stochastic Limit Theory. Oxford: Oxford University Press, 1994

    Book  Google Scholar 

  6. Davidson J. Establishing conditions for the functional central limit theorem in nolinear and semiparametric time series processes. J Econometrics, 2002, 106: 243–269

    Article  MATH  MathSciNet  Google Scholar 

  7. Davidson J, De Jong R M. The functional central limit theorem and weak convergence to stochastic integrals II: Fractionally integrated processes. Econometric Theory, 2000, 16: 643–666

    Article  MATH  MathSciNet  Google Scholar 

  8. De Jong R M. Central limit theorems for dependent heterogeneous random variables. Econometric Theory, 1997, 13: 353–367

    Article  MathSciNet  Google Scholar 

  9. De Jong R M, Davidson J. The functional central limit theorem and weak convergence to stochastic integrals I: Weakly dependent processes. Econometric Theory, 2000, 16: 612–642

    Google Scholar 

  10. Gallant A R, White H. A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models. New York: Basil Blackwell, 1988

    Google Scholar 

  11. Granger C W J, Joyeux A. An introduction to long memory time series models and fractional differencing. J Time Ser Anal, 1980, 1: 15–29

    Article  MATH  MathSciNet  Google Scholar 

  12. Hosking J R M. Fractional differencing. Biometrika, 1981, 68: 165–176

    Article  MATH  MathSciNet  Google Scholar 

  13. Ibragimov I A. Some limit theorems for stationary processes. Theory Probab Appl, 1962, 7: 349–382

    Article  MATH  Google Scholar 

  14. Lin Z Y. Strong near-epoch dependence. Sci China Ser A, 2004, 47: 497–507

    Article  MATH  MathSciNet  Google Scholar 

  15. Lin Z Y, Qiu J. A central limit theorem for strong near-epoch dependent random variables. Chinese Ann Math Ser B, 2004, 25B: 263–274

    Article  MathSciNet  Google Scholar 

  16. Qiu J, Lin Z Y. The functional central limit theorem for strong near-epoch dependent random variables. Prog Nat Sci, 2004, 14: 9–14

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiu J, Lin Z Y. The variance of partial sums of strong near-epoch dependent variables. Statist Probab Lett, 2006, 76: 1845–1854

    Article  MATH  MathSciNet  Google Scholar 

  18. Qiu J, Lin Z Y. The functional central limit theorem for linear processes with strong near-epoch dependent innovations. J Math Anal Appl, DOI: 10.1016/j.jmaa.2010.10.078

  19. Sowell F B. The fractional unit root distribution. Econometrica, 1990, 58: 495–505

    Article  MATH  MathSciNet  Google Scholar 

  20. Tanaka K. The nonstationary fractional unit root. Econometric Theory, 1999, 15: 549–582

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang Q Y, Lin Y X, Gulati C M. Asymptotics for general fractionally integrated processes with applications to unit root tests. Econometric Theory, 2003, 19: 143–164

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Lin, Z. The invariance principle for fractionally integrated processes with strong near-epoch dependent innovations. Sci. China Math. 54, 117–132 (2011). https://doi.org/10.1007/s11425-010-4140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4140-2

Keywords

MSC(2000)

Navigation