Skip to main content
Log in

Hausdorff measures of the image, graph and level set of bifractional Brownian motion

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let B H,K = {B H,K(t), t ∈ ℝ+} be a bifractional Brownian motion in ℝd. This process is a self-similar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of fractional Brownian motion (which is obtained for K = 1). The exact Hausdorff measures of the image, graph and the level set of B H,K are investigated. The results extend the corresponding results proved by Talagrand and Xiao for fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adler R J. Hausdorff dimension and Gaussian fields. Ann Probab, 1977, 5: 145–151

    Article  MATH  Google Scholar 

  2. Adler R J. The Geometry of Random Fields. New York: Wiley, 1981

    MATH  Google Scholar 

  3. Es-Sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch Dyn, 2007, 7: 365–388

    Article  MATH  MathSciNet  Google Scholar 

  4. Falconer K J. Fractal Geometry-Mathematical Foundations and Applications. New York: Wiley & Sons, 1990

    MATH  Google Scholar 

  5. German D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1–67

    Article  MathSciNet  Google Scholar 

  6. Goldman A. Mouvement Brownien à plusieurs páramètres: mesure de Hausdorff des trajectoires. Astérisque 167, 1988

  7. Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195–201

    Google Scholar 

  8. Kahane J P. Some Random Series of Functions. 2nd ed. Cambridge: Cambridge University Press, 1985

    MATH  Google Scholar 

  9. Lamperti J. Semi-stable stochastic processes. Trans Amer Math Soc, 1962, 104: 62–78

    Article  MATH  MathSciNet  Google Scholar 

  10. Lei P, Nualart D. A decomposition of the bifractional Brownian motion and some applications. Statist Probab Lett, 2009, 79: 619–624

    Article  MATH  MathSciNet  Google Scholar 

  11. Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10: 422–437

    Article  MATH  MathSciNet  Google Scholar 

  12. Marcus M B. Hölder conditions for Gaussian processes with stationary increments. Trans Amer Math Soc, 1968, 134: 29–52

    MATH  MathSciNet  Google Scholar 

  13. Pruitt W E, Taylor S J. Sample path properties of processes with stable components. Z Wahrscheinlichkeitstheorie Verw Gebiete, 1969, 12: 267–289

    Article  MATH  MathSciNet  Google Scholar 

  14. Rogers C A, Taylor S J. Functions continuous and singular with respect to a Hausdorff measure. Mathematika, 1961, 8: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  15. Samorodnitsky G, Taqqu M S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman & Hall, 1994

    MATH  Google Scholar 

  16. Shieh N R, Xiao Y. Images of Gaussian random fields: Salem sets and interior points. Studia Math, 2006, 176: 37–60

    Article  MATH  MathSciNet  Google Scholar 

  17. Talagrand M. New Gaussian estimates for enlarged balls. Geom Funct Anal, 1993, 3: 502–526

    Article  MATH  MathSciNet  Google Scholar 

  18. Talagrand M. Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann Probab, 1995, 23: 767–775

    Article  MATH  MathSciNet  Google Scholar 

  19. Talagrand M. Multiple points of trajectories of multiparameter fractional Brownian motion. Probab Theory Related Fields, 1998, 112: 545–563

    Article  MATH  MathSciNet  Google Scholar 

  20. Tudor C A, Xiao Y. Sample path properties of bifractional Brownian motion. Bernoulli, 2007, 13: 1023–1052

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao Y. Hausdorff measure of the sample paths of Gaussian random fields. Osaka J Math, 1996, 33: 895–913

    MATH  MathSciNet  Google Scholar 

  22. Xiao Y. Hausdorff measure of the graph of fractional Brownian motion. Math Proc Camb Soc, 1997a, 122: 565–576

    Article  MATH  Google Scholar 

  23. Xiao Y. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab Theory Related Fields, 1997b, 109: 129–157

    Article  MATH  MathSciNet  Google Scholar 

  24. Xiao Y. Strong local nondeterminism of Gaussian random fields and its applications. In: Asymptotic Theory in Probability and Statistics with Applications (Lai T L, Shao Q M and Qian L, eds). Beijing: Higher Education Press, 2007, 136–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NaNa Luan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci. China Math. 53, 2973–2992 (2010). https://doi.org/10.1007/s11425-010-4100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4100-x

Keywords

MSC(2000)

Navigation