Skip to main content
Log in

A quantitative program for Hadwiger’s covering conjecture

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In 1957, Hadwiger made a conjecture that every n-dimensional convex body can be covered by 2n translates of its interior. Up to now, this conjecture is still open for all n ⩾ 3. In 1933, Borsuk made a conjecture that every n-dimensional bounded set can be divided into n + 1 subsets of smaller diameters. Up to now, this conjecture is open for 4 ⩽ n ⩽ 297. In this article we encode the two conjectures into continuous functions defined on the spaces of convex bodies, propose a four-step program to attack them, and obtain some partial results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belousov J F. Theorems on the covering of plane figures. Ukrain Geom Sb, 1977, 20: 10–17

    MATH  MathSciNet  Google Scholar 

  2. Besicovitch A S. Measure of asymmetry of convex curves. J London Math Soc, 1948, 23: 237–240

    Article  MathSciNet  Google Scholar 

  3. Bezdek K. The illumination conjecture and its extensions. Period Math Hungar, 2006, 53: 59–69

    Article  MATH  MathSciNet  Google Scholar 

  4. Bezdek K, Bisztriczky T. A proof of Hadwiger’s covering conjecture for dual cyclic polytopes. Geom Dedicata, 1997, 68: 29–41

    Article  MATH  MathSciNet  Google Scholar 

  5. Boltyanski V G. Solution of the illumination problem for bodies with md M = 2. Discrete Comput Geom, 2001, 26: 527–541

    MATH  MathSciNet  Google Scholar 

  6. Boltyanski V G, Martini H. Illumination of direct vector sums of convex bodies. Studia Sci Math Hungar, 2007, 44: 367–376

    MATH  MathSciNet  Google Scholar 

  7. Boltyanski V G, Martini H, Soltan P S. Excursions into Combinatorial Geometry. Berlin: Springer-Verlag, 1997

    MATH  Google Scholar 

  8. Böröczky Jr K, Wintsche G. Covering the sphere by equal spherical balls. In: The Goodman-Pollack Festschrift. Berlin: Springer-Verlag, 2003, 237–253

    Google Scholar 

  9. Borsuk K. Drei Sätzeüber die n-dimensionale Euklidische sphäre. Fund Math, 1933, 20: 177–190

    Google Scholar 

  10. Brass P, Moser W, Pach J. Research Problems in Discrete Geometry. New York: Springer-Verlag, 2005

    MATH  Google Scholar 

  11. Chakerian G D, Groemer H. Convex bodies of constant width. In: Gruber P M, Wills J M, eds. Convexity and its Applications. Basel: Birkhäuser, 1983, 49–96

    Google Scholar 

  12. Eggleston H G. Convexity. Cambridge: Cambridge University Press, 1958

    Book  MATH  Google Scholar 

  13. Fejes Tóth L. Kreisüberdeckungen der hyperbolischen Ebene. Acta Math Acad Sci Hungar, 1953, 4: 111–114

    Article  MATH  MathSciNet  Google Scholar 

  14. Gruber P M. Convex and Discrete Geometry. Berlin: Springer-Verlag, 2007

    MATH  Google Scholar 

  15. Grünbaum B. Borsuk’s problem and related questions. Proc Symp Pure Math, 1963, 7: 271–284

    Google Scholar 

  16. Hadwiger H. Ungelöste Probleme No. 20. Elem Math, 1957, 12: 121

    MathSciNet  Google Scholar 

  17. Hinrichs A, Richter C. New sets with large Borsuk numbers. Discrete Math, 2003, 270: 137–147

    Article  MATH  MathSciNet  Google Scholar 

  18. John F. Extremum problems with inequalities as subsidiary conditions. In: Courant Anniversary Volume. New York: Interscience, 1948, 187–204

    Google Scholar 

  19. Kahn J, Kalai G. A counterexample to Borsuk’s conjecture. Bull Amer Math Soc, 1993, 29: 60–62

    Article  MATH  MathSciNet  Google Scholar 

  20. Krotoszynski S. Covering a plane convex body with five smaller homothetical copies. Beiträge Algebra Geom, 1987, 25: 171–176

    MATH  MathSciNet  Google Scholar 

  21. Lassak M. Solution of Hadwiger’s covering problem for centrally symmetric convex bodies in E 3. J London Math Soc, 1984, 30: 501–511

    Article  MATH  MathSciNet  Google Scholar 

  22. Lassak M. Covering a plane convex body by four homothetical copies with the smallest positive ratio. Geom Dedicata, 1986, 21: 157–167

    Article  MathSciNet  Google Scholar 

  23. Levi F W. Ein geometrisches Überdeckungsproblem. Arch Math, 1954, 5: 476–478

    Article  MATH  Google Scholar 

  24. Martini H, Soltan V. Combinatorial problems on the illumination of convex bodies. Aequationes Math, 1999, 57: 121–152

    Article  MATH  MathSciNet  Google Scholar 

  25. Papadoperakis I. An estimate for the problem of illumination of the boundary of a convex body in E 3. Geom Dedicata, 1999, 75: 275–285

    Article  MATH  MathSciNet  Google Scholar 

  26. Perkal J. Sur la subdivision des ensembles en parties de diamétre inferieur. Colloq Math, 1947, 1: 45

    Google Scholar 

  27. Rogers C A, Zong C. Covering convex bodies by translates of convex bodies. Mathematika, 1997, 44: 215–218

    Article  MATH  MathSciNet  Google Scholar 

  28. Schramm O. Illuminating sets of constant width. Mathematika, 1988, 35: 180–189

    Article  MATH  MathSciNet  Google Scholar 

  29. Schütte K. Überdeckungen der Kugel mit höchstens acht Kreisen. Math Ann, 1955, 129: 181–186

    Article  MATH  MathSciNet  Google Scholar 

  30. Talata I. Solution of Hadwiger-Levi’s covering problem for duals of cyclic 2k-polytopes. Geom Dedicata, 1999, 74: 61–71

    Article  MATH  MathSciNet  Google Scholar 

  31. Zong C. Some remarks concerning kissing numbers, blocking numbers and covering numbers. Period Math Hungar, 1995, 30: 233–238

    Article  MATH  MathSciNet  Google Scholar 

  32. Zong C. The kissing number, blocking number and covering number of a convex body. Contemp Math, 2008, 453: 529–548

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanming Zong.

Additional information

Dedicated to Professor Wang Yuan on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, C. A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 53, 2551–2560 (2010). https://doi.org/10.1007/s11425-010-4087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4087-3

Keywords

MSC(2000)

Navigation