Skip to main content
Log in

Differential operators and automorphism schemes

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The ring of global differential operators of a variety is in closed and deep relation with its automorphism scheme. This relation can be applied to the study of homogeneous schemes, giving some criteria of homogeneity, a generalization of Serre-Lang theorem, and some consequences about abelian varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthelot P, Ogus A. Notes on Crystalline Cohomology, Mathematical Notes. Princeton: Princeton University Press, 1978

    Google Scholar 

  2. Demazure M, Gabriel P. Groupes Algébriques, I. Masson-Amsterdam-Paris: North-Holland Pub. Co., 1970

    Google Scholar 

  3. Griffiths P, Harris J. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978

    MATH  Google Scholar 

  4. Igusa J I. A Fundamental Inequality in the Theory of Picard Varieties. Proc Nat Acad Sci USA, 1955, 41: 318–320

    Google Scholar 

  5. Li K Z. Actions of group schemes (I). Compositio Math, 1991, 80: 55–74

    MATH  MathSciNet  Google Scholar 

  6. Li K Z. Commutative Algebra and Homological Algebra (in Chinese). CAS Graduate Series. Beijing: Science Press, 1998, 2nd print, 1999

    Google Scholar 

  7. Li K. Automorphism Group Schemes of Finite Field Extensions. Bonn: Max-Planck-Institut für Mathematik, 2000

    Google Scholar 

  8. Li K Z. Vector fields and automorphism groups. 2004 Symposium on Algebraic Geometry, Kinosaki, 2004, 119–126

  9. Li K Z, Frans Oort. Moduli of Supersingular Abelian Varieties. LNM 1680. Berlin: Springer, 1998

    MATH  Google Scholar 

  10. Matsumura H, Oort F. Representability of group functors and automorphisms of algebraic schemes. Invent Math, 1967, 4: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  11. Mehta V B, Srinivas V. Varieties in positive characteristic with trivial tangent bundle. Compositio Mathematica, 1987, 64: 191–212

    MATH  MathSciNet  Google Scholar 

  12. Mumford D. Geometric Invariant Theory, 2nd ed. Ergebnisse, Berlin-Heidelberg-New York: Springer-Verlag, 1982

    MATH  Google Scholar 

  13. Mumford D. Abelian Varieties, 2nd print. Oxford: Tata Inst Fund Res & Oxford University Press, 1985

    MATH  Google Scholar 

  14. Nakamura I. Complex parallelisable manifolds and their small deformations. J Diff Geom, 1975, 10: 85–112

    MATH  Google Scholar 

  15. Varadarajan V S. Lie Groups, Lie Algebras, and Their Representations. New York: Prentice-Hall, 1974

    MATH  Google Scholar 

  16. Wang H C. Comples parallelisable manifold. Proc Amer Math Soc, 1954, 5: 771–776

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeZheng Li.

Additional information

Dedicated to Professor Wang Yuan on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K. Differential operators and automorphism schemes. Sci. China Math. 53, 2363–2380 (2010). https://doi.org/10.1007/s11425-010-4073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4073-9

Keywords

MSC(2000)

Navigation