Skip to main content
Log in

Inhomogenous quantum codes (I): additive case

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the quantum error-correcting codes are generalized to the inhomogenous quantum-state space \( \mathbb{C}^{q_1 } \otimes \mathbb{C}^{q_2 } \otimes \cdots \otimes \mathbb{C}^{q_n } \), where q i (1 ⩽ i ⩽ n) are arbitrary positive integers. By attaching an abelian group A i of order q i to the space Cqi \( \mathbb{C}^{q_1 } \left( {1 \leqslant i \leqslant n} \right) \), we present the stabilizer construction of such inhomogenous quantum codes, called additive quantum codes, in term of the character theory of the abelian group A = A 1A 2⊕...⊕ℂ n . As usual case, such construction opens a way to get inhomogenous quantum codes from the classical mixed linear codes. We also present Singleton bound for inhomogenous additive quantum codes and show several quantum codes to meet such bound by using classical mixed algebraic-geometric codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inform Theory, 1998, 44: 1369–1387

    Article  MATH  MathSciNet  Google Scholar 

  2. Chau H F. Correcting quantum errors in higher spin systems. Phys Rev A, 1997, 55: 839–841

    Article  Google Scholar 

  3. Chau H F. Five quantum register error correction code for higher spin systems. Phys Rev A, 1997, 56: 1–4

    Article  MathSciNet  Google Scholar 

  4. Feng K Q, Xu L J, Hickernell F J. Linear error-block codes. Finite Fields Appl, 2006, 12: 638–652

    Article  MATH  MathSciNet  Google Scholar 

  5. Gottesman D. Fault-tolerant quantum computation with high-dimensional systems. Lect Notes Comput Sci, 1999, 1509: 302–313

    Article  MathSciNet  Google Scholar 

  6. Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over finite field. IEEE Trans Inform Theory, 2006, 52: 4892–4914

    Article  MathSciNet  Google Scholar 

  7. Knill E. Non binary unitary error bases and quantum codes. arXiv: quant-ph/9608048

  8. Knill E. Group representations, error bases and quantum codes. arXiv: quant-ph/9608049

  9. van Lint J H. Introduction to Coding Theory. 3rd ed. Berlin: Springer-Verlag, 2000

    Google Scholar 

  10. Perkins S, Sakhnovich A L, Smith D H. On an upper bound for mixed error-correcting codes. IEEE Trans Inform Theory, 2006, 52: 708–712

    Article  MathSciNet  Google Scholar 

  11. Shor P W. Scheme for reducing decoherence in quantum computer memory. Phys Rev A, 1995, 52: 2493–2496

    Article  Google Scholar 

  12. Steane A. Multiple-particle interference and quantum error correction. Proc R Soc Lond Ser A Math Phys Eng Sci, 1996, 452: 2551–2577

    Article  MATH  MathSciNet  Google Scholar 

  13. Stichtenoch H. Algebraic Function Fields and Codes. Berlin: Springer-Verlag, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiYang Wang.

Additional information

Dedicated to Professor Wang Yuan on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Feng, R. & Feng, K. Inhomogenous quantum codes (I): additive case. Sci. China Math. 53, 2501–2510 (2010). https://doi.org/10.1007/s11425-010-4072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4072-x

Keywords

MSC(2000)

Navigation