Skip to main content
Log in

Some equalities and inequalities of g-continuous frames

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we derive some equalities and inequalities about g-continuous frames, which are an extension to g-frames and continuous frames. We also discuss the stability of the perturbation of a g-continuous frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdollahpour M R, Faroughi M H. Continuous g-frames in Hilbert spaces. Southeast Asian Bull Math, 2008, 32: 1–19

    MATH  MathSciNet  Google Scholar 

  2. Ali S T, Antoine J P, Gazeau J P. Continuous frames in Hilbert spaces. Ann Physics, 1993, 222: 1–37

    Article  MATH  MathSciNet  Google Scholar 

  3. Ali S T, Antoine J P, Gazeau J P. Coherent States, Wavelets and Their Generalizatons. Berlin: Springer-Verlag, 2000

    Google Scholar 

  4. Askari-hemmat A, Dehghan M A, Radjabalipour M. Generalized frames and their redundancy. Proc Amer Math Soc, 2000, 129: 1143–1147

    Article  MathSciNet  Google Scholar 

  5. Balan R, Casazza P G, Edidin D, et al. A new identity for Parseval frames. Proc Amer Math Soc, 2007, 135: 1007–1015

    Article  MATH  MathSciNet  Google Scholar 

  6. Benedetto J J, Heller W. Irregular sampling and theory of frames I. Note Mat, 1990, 10: 103–125

    MathSciNet  Google Scholar 

  7. Casazza P G. The art of frame theory. Taiwanese J Math, 2000, 4: 129–201

    MATH  MathSciNet  Google Scholar 

  8. Chan R H, Riemenschneider S D, Shen L, et al. Tight frame: An efficient way for high-resolution image reconstruction. Appl Comput Harmon Anal, 2004, 17: 91–115

    Article  MATH  MathSciNet  Google Scholar 

  9. Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003

    MATH  Google Scholar 

  10. Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J Math Phys, 1986, 27: 1271–1283

    Article  MATH  MathSciNet  Google Scholar 

  11. Dehghan M A, Hasankhani Fard M A. G-continuous frames and coorbit spaces. Acta Math Acad Paedagog Nyházi (NS), 2008, 24: 373–383

    MATH  MathSciNet  Google Scholar 

  12. Ding J. New perturbation results on pseudo-inverses of linear operators in Banach spaces. Linear Algebra Appl, 2003, 362: 229–235

    Article  MATH  MathSciNet  Google Scholar 

  13. Dudey Ward N E, Partington J R. A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling. SIAM J Control Optim, 1998, 36: 654–679

    Article  MathSciNet  Google Scholar 

  14. Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72: 341–366

    MATH  MathSciNet  Google Scholar 

  15. Eldar Y, Forney Jr G D. Optimal tight frames and quantum measurement. IEEE Trans Inform Theory, 2002, 48: 599–610

    Article  MATH  MathSciNet  Google Scholar 

  16. Ferreira P J S G. Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction. In: Byrnes J S, ed. Signal Process for Multimedia. Amsterdam: IOS Press, 1999, 35–54

    Google Scholar 

  17. Fornasier M, Rauhut H. Continuous frames, function spaces, and the discretizaton problem. J Fourier Anal Appl, 2005, 11: 245–287

    Article  MATH  MathSciNet  Google Scholar 

  18. Gabardo J P, Han D. Frames associated with measurable spaces. Adv Comput Math, 2003, 18: 127–147

    Article  MATH  MathSciNet  Google Scholar 

  19. Gąavruta P. On some identities and inequalities for frames in Hilbert spaces. J Math Anal Appl, 2006, 321: 469–478

    Article  MathSciNet  Google Scholar 

  20. Grossmann A, Morlet J, Paul T. Transforms associated to square integrable group representation, Φ, Examples. Ann Inst H Poincaré, 1986, 45: 293–309

    MATH  MathSciNet  Google Scholar 

  21. Göchenig K. Foudations of time-frequency analysis. Berlin: Birkhäuser Verlag, 2001

    Google Scholar 

  22. Holmes R B, Paulsen V I. Optimal frames for erasures. Linear Algebra Appl, 2004, 377: 31–51

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaiser G. A Friendly Guide to Wavelets. Boston: Birkhäuser, 1994

    MATH  Google Scholar 

  24. Li Y Z, Lian Q F. Gabor systems on discrete periodic sets. Sci China Ser A, 2009, 52: 1639–1660

    Article  MATH  MathSciNet  Google Scholar 

  25. Rahimi A, Najati A, Dehghan Y N. Continuous frames in Hilbert spaces. Methods Funct Anal Topology, 2006, 12: 170–182

    MATH  MathSciNet  Google Scholar 

  26. Rudin W. Functional Analysis. 2nd ed. New York: McGraw-Hill, 1991

    MATH  Google Scholar 

  27. Strohmer T, Heath Jr R. Grassmanian frames with applications to coding and communications. Appl Comput Harmon Anal, 2003, 14: 257–275

    Article  MATH  MathSciNet  Google Scholar 

  28. Sun W C. G-frames and g-Riesz bases. J Math Anal Appl, 2006, 322: 437–452

    Article  MATH  MathSciNet  Google Scholar 

  29. Sun W C. Stability of g-frames. J Math Anal Appl, 2007, 326: 858–868

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiao X C, Zhu Y C, Zeng X M. Some properties of g-Parseval frames in Hilbert spaces. Acta Math Sinca Chin Ser, 2008, 51: 1143–1150

    MATH  MathSciNet  Google Scholar 

  31. Yang D Y, Zhou X W. Irregular wavelet frames on L 2(R n). Sci China Ser A, 2005, 48: 277–287.

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhu Y C. Characterizations of g-frames and g-Riesz bases in Hilbert spaces. Acta Math Sin Engl Ser, 2008, 24: 1727–1736

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoMing Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Zeng, X. Some equalities and inequalities of g-continuous frames. Sci. China Math. 53, 2621–2632 (2010). https://doi.org/10.1007/s11425-010-4054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4054-z

Keywords

MSC(2000)

Navigation