Skip to main content
Log in

Some non-trivial Kazhdan-Lusztig coefficients of an affine Weyl group of type à n

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper we show that the leading coefficient µ(y,w) of some Kazhdan-Lusztig polynomials P y,w with y,w in an affine Weyl group of type à n is n + 2. This fact has some consequences on the dimension of first extension groups of finite groups of Lie type with irreducible coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen H H. An inversion formula for the Kazhdan-Lusztig polynomiaals for affine Weyl groups. Adv in Math, 1986, 60: 125–153

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersen H H. Extensions of modules for algebraic groups. Amer J Math, 1984, 106: 489–504

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersen H H, Jantzen J C. Cohomology of induced representations for algebraic groups. Math Ann, 1984, 269: 487–525

    Article  MATH  MathSciNet  Google Scholar 

  4. Andersen H H, Jantzen J C, Soergel W. Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p. Astérisque, 1994, 220: 321–322

    MathSciNet  Google Scholar 

  5. Cline E, Parshall B, Scott L. Detecting rational cohomology of algebraic groups. J London Math Soc, 1983, 28: 293–300

    Article  MATH  MathSciNet  Google Scholar 

  6. Cline E, Parshall B, Scott L. Reduced standard modules and cohomology. Trans Amer Math Soc, 2009, 361: 5223–5261

    Article  MATH  MathSciNet  Google Scholar 

  7. Guralnick R M. The dimension of the first cohomology group. In: Representation Theory, II, Lecture Notes in Math, vol. 1178. Berlin: Springer-Verlag, 1986, 94–97

    Chapter  Google Scholar 

  8. Iwahori N, Matsumoto H. On some Bruhat decomposition and the structure of Hecke rings of p-adic Chevalley groups. Publ IHES, 1965, 25: 5–48

    MATH  MathSciNet  Google Scholar 

  9. Jantzen J C. Representations of Algebraic Groups, 2nd ed. In: Mathematical Surveys and Monographs, vol. 107. Providence, RI: AMS, 2003

    Google Scholar 

  10. Kaneda M. On the inverse Kazhdan-Lusztig polynomials for affine Weyl groups. J Reine Angew Math, 1987, 381: 116–135

    MATH  MathSciNet  Google Scholar 

  11. Kazhdan D, Lusztig G. Representations of Coxeter groups and Hecke algebras. Invent Math, 1979, 53: 165–184

    Article  MATH  MathSciNet  Google Scholar 

  12. Lusztig G. Some problems in the representation theory of finite Chevalley groups. Proc Symp Pure Math, 1980, 37: 313–317

    MathSciNet  Google Scholar 

  13. Lusztig G. Hecke algebras and Jantzen’s generic decomposition patters. Adv Math, 1980, 37: 121–164

    Article  MATH  MathSciNet  Google Scholar 

  14. Lusztig G. Singularities, character formulas, and a q-analog of weight multiplicities. Astérisque, 1983, 101–102: 208–227

    MathSciNet  Google Scholar 

  15. Lusztig G. Cells in affine Weyl groups. In: Algebraic groups and related topics, Advanced Studies in Pure Math, vol. 6. Amsterdam: North Holland, 1985, 255–287

    Google Scholar 

  16. Lusztig G. Cells in affine Weyl groups, II. J Algebra, 1987, 109: 536–548

    Article  MATH  MathSciNet  Google Scholar 

  17. Lusztig G. Cells in affine Weyl groups, III. J Fac Sci Univ Tokyo Sect IA Math, 1987, 34: 223–243

    MATH  MathSciNet  Google Scholar 

  18. Lusztig G. Nonlocal finiteness of a W-graph. Represent Theory, 1996, 1: 25–30

    Article  Google Scholar 

  19. McLarnan T, Warrington G. Counterexamples to the 0,1-Conjecture. Represent Theory, 2003, 7: 181–195

    Article  MATH  MathSciNet  Google Scholar 

  20. Scott L. Some new examples in 1-cohomology. Special Issue celebrating the 80th birthday of Robert Steinberg. J Algebra, 2003, 260: 416–425

    Article  MATH  MathSciNet  Google Scholar 

  21. Shi J Y. A two-sided cell in an affine Weyl group I. J London Math Soc, 1987, 37: 407–420

    Article  Google Scholar 

  22. Shi J Y. A two-sided cell in an affine Weyl group II. J London Math Soc, 1988, 38: 235–264

    Google Scholar 

  23. Springer T A. Letter to G. Lusztig. 1987

  24. Wang L P. Leading coefficients of the Kazhdan-Lusztig polynomials for an affine Weyl group of type \( \tilde B \) 2. Preprint; arXiv: 0805.3463v1

  25. Xi N. The based ring of the lowest two-sided cell of an affine Weyl group. J Algebra, 1990, 134: 356–368

    Article  MATH  MathSciNet  Google Scholar 

  26. Xi N. Representations of Affine Hecke Algebras. Lecture Notes in Mathematics 1587. Berlin-Heidelberg: Springer-Verlag, 1994

    MATH  Google Scholar 

  27. Xi N. The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group S n. J Algebra, 2005, 285: 136–145

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NanHua Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, L., Xi, N. Some non-trivial Kazhdan-Lusztig coefficients of an affine Weyl group of type à n . Sci. China Math. 53, 1919–1930 (2010). https://doi.org/10.1007/s11425-010-4041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4041-4

Keywords

MSC(2000)

Navigation