Skip to main content
Log in

Cohomology of a class of Kadison-Singer algebras

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let L be the complete lattice generated by a nest N on an infinite-dimensional separable Hilbert space H and a rank one projection P ζ given by a vector ζ in H. Assume that ζ is a separating vector for N″, the core of the nest algebra Alg(N). We show that L is a Kadison-Singer lattice, and hence the corresponding algebra Alg(L) is a Kadison-Singer algebra. We also describe the center of Alg(L) and its commutator modulo itself, and show that every bounded derivation from Alg(L) into itself is inner, and all n-th bounded cohomology groups H n(Alg(L), B(H)) of Alg(L) with coefficients in B(H) are trivial for all n ⩾ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen E. Derivations of nest algebras. Math Ann, 1975, 229: 208–233

    Google Scholar 

  2. Davidson K R. Nest Algebras. π Pitman Research Notes in Mathematics Series, 191. New York: Longman Scientific & Technical, 1988

    Google Scholar 

  3. Ge L, Yuan W. Kadison-Singer algebras, I — hyperfinite case. Proc Natl Acad Sci USA, 2010, 107: 1838–1843

    Article  Google Scholar 

  4. Ge L, Yuan W. Kadison-Singer algebras, II — finite case. Proc Natl Acad Sci USA, 2010, 107: 4840–4844

    Article  Google Scholar 

  5. Han D. A note on the commutants of CSL algebras modulo bimodules. Proc Amer Math Soc, 1992, 116: 707–709

    Article  MATH  MathSciNet  Google Scholar 

  6. Johnson B E. Cohomology in Banach Algebras. Memoirs of the American Mathematical Society, No 127. Providence, RI: American Mathematical Society, 1972

    Google Scholar 

  7. Kadison K R, Ringrose J. Fundamentals of the Operator Algebras, Vol I and II. Orlando: Academic Press, 1983 and 1986

    Google Scholar 

  8. Kadison R, Singer I. Triangular operator algebras. Fundamentals and hyperreducible theory. Amer J Math, 1960, 82: 227–259

    Article  MATH  MathSciNet  Google Scholar 

  9. Lance E C. Cohomology and perturbations of nest algebras. Proc London Math Soc, 1981, 43: 334–356

    Article  MATH  MathSciNet  Google Scholar 

  10. Longstaff W. Strong reflexive lattices. J London Math Soc, 1975, 11: 491–498

    Article  MATH  MathSciNet  Google Scholar 

  11. Ringrose J. On some algebras of operators. Proc London Math Soc, 1965, 3: 61–83

    Article  MathSciNet  Google Scholar 

  12. Sinclair A M, Smith R. Hochschild Cohomology of von Neumann Algebras. London Math Soc Lecture Notes Ser, vol. 203. Cambridge: Cambridge University Press, 1995

    MATH  Google Scholar 

  13. Wang L, Yuan W. On some examples of Kadison-Singer algebras. Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengJun Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, C. Cohomology of a class of Kadison-Singer algebras. Sci. China Math. 53, 1827–1839 (2010). https://doi.org/10.1007/s11425-010-4025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4025-4

Keywords

MSC(2000)

Navigation