On the reconstruction of Dirichlet-to-Neumann map in inverse scattering problems with stability estimates

Abstract

Consider the determination of Dirichlet-to-Neumann (D-to-N) map from the far-field pattern in inverse scattering problems, which is the key step in some recently developed inversion schemes such as probe method. Essentially, this problem is related to the reconstruction of the scattered wave from its far-field data. We firstly prove the well-known uniqueness result of the D-to-N map from the far-field pattern using a new scheme based on the mixed reciprocity principle. The advantage of this new proof scheme is that it provides an efficient algorithm for computing the D-to-N map, avoiding the numerical differentiation for the scattered wave. Then combining with the classical potential theory, a simple and feasible regularizing reconstruction scheme for the D-to-N map is proposed. Finally the stability estimate for the reconstruction with noisy input data is rigorously analyzed.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Ammari H, Kang H. Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory. New York: Springer-Verlag, 2007

    Google Scholar 

  2. 2

    Bushuyev I. Stability of recovering the near-field wave from the scattering amplitude. Inverse Problems, 1996, 12: 859–868

    MATH  Article  MathSciNet  Google Scholar 

  3. 3

    Cakoni F, Colton D. The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J Appl Math, 2004, 64: 709–723

    MATH  Article  MathSciNet  Google Scholar 

  4. 4

    Cheng J, Liu J J, Nakamura G. The numerical realization of probe method for the inverse scattering problems from the near-field data. Inverse Problems, 2005, 21: 839–856

    MATH  Article  MathSciNet  Google Scholar 

  5. 5

    Cheng J, Liu J J, Nakamura G, et al. Recovery of multiple obstacles by probe method. Quart Appl Math, 2009, 67: 221–247

    MATH  MathSciNet  Google Scholar 

  6. 6

    Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. Berlin: Springer-Verlag, 1998

    Google Scholar 

  7. 7

    Erhard K, Potthast R. A numerical study of the probe method. SIAM J Sci Comput, 2006, 28: 1597–1612

    MATH  Article  MathSciNet  Google Scholar 

  8. 8

    Ikehata M. Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems, 1998, 14: 949–954

    MATH  Article  MathSciNet  Google Scholar 

  9. 9

    Ikehata M. Reconstruction of obstacle from boundary measurements. Wave Motion, 1999, 30: 205–223

    MATH  Article  MathSciNet  Google Scholar 

  10. 10

    Isakov V. New stability results for soft obstacles in inverse scattering. Inverse Problems, 1993, 9: 535–543

    MATH  Article  MathSciNet  Google Scholar 

  11. 11

    Kress R. Linear Integral Equations, 2nd ed. New York: Springer-Verlag, 1998

    Google Scholar 

  12. 12

    Liu J J. Determination of Dirichlet-to-Neumann map for a mixed boundary problem. Appl Math Comput, 2005, 161: 843–864

    MATH  Article  MathSciNet  Google Scholar 

  13. 13

    Liu J J, Cheng J, Nakamura G. Reconstruction and uniqueness of an inverse scattering problem with impedance boundary. Sci China Ser A, 2002, 45: 1408–1419

    MATH  Article  MathSciNet  Google Scholar 

  14. 14

    Liu J J, Nakamura G, Potthast R. A new approach and improved error analysis for reconstructing the scattered wave by the point source method. J Comput Math, 2007, 25: 113–130

    MATH  MathSciNet  Google Scholar 

  15. 15

    Liu J J, Nakamura G, Sini M. Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder. SIAM J Appl Math, 2007, 67: 1124–1146

    MATH  Article  MathSciNet  Google Scholar 

  16. 16

    Liu J J, Sini M. On the accuracy of the numerical detection of complex obstacles from far field data using the probe method. SIAM J Sci Comput, 2009, 31: 2665–2687

    MATH  Article  MathSciNet  Google Scholar 

  17. 17

    Nakamura G, Sini M. Obstacle and boundary determination from scattering data. SIAM J Math Anal, 2007, 39: 819–837

    MATH  Article  MathSciNet  Google Scholar 

  18. 18

    Potthast R. Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J Comput Appl Math, 2000, 114: 247–274

    MATH  Article  MathSciNet  Google Scholar 

  19. 19

    Potthast R. Point Sources and Multipoles in Inverse Scattering Theory. London: Chapman & Hall/CRC, 2001

    Google Scholar 

  20. 20

    Potthast R, Schulz J. A multiwave range test for obstacle reconstruction with unknown physical properties. J Comput Appl Math, 2007, 205: 53–71

    MATH  Article  MathSciNet  Google Scholar 

  21. 21

    Potthast R, Sylvester J, Kusiak S. A ‘range test’ for determining scatterers with unknown physical properties. Inverse Problems, 2003, 19: 533–547

    MATH  Article  MathSciNet  Google Scholar 

  22. 22

    Wang H B, Liu J J. Numerical solution for the Helmholtz equation with mixed boundary condition. Numer Math J Chin Univ (Engl Ser), 2007, 16: 203–214

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to JiJun Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Liu, J. On the reconstruction of Dirichlet-to-Neumann map in inverse scattering problems with stability estimates. Sci. China Math. 53, 2069–2084 (2010). https://doi.org/10.1007/s11425-010-3154-0

Download citation

Keywords

  • inverse scattering
  • Dirichlet-to-Neumann map
  • regularization
  • mixed reciprocity principle
  • stability

MSC(2000)

  • 35J25
  • 45A05
  • 45Q05
  • 65F22