Skip to main content
Log in

Convergence rates for reversible Markov chains without the assumption of nonnegative definite matrices

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Explicit convergence rates in geometric and strong ergodicity for denumerable discrete time Markov chains with general reversible transition matrices are obtained in terms of the geometric moments or uniform moments of the hitting times to a fixed point. Another way by Lyapunov’s drift conditions is also used to derive these convergence rates. As a typical example, the discrete time birth-death process (random walk) is studied and the explicit criteria for geometric ergodicity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxendale P. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann Appl Probab, 2005, 15: 700–738

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen M F. Equivalence of exponential ergodicity and L 2-exponential convergence for Markov chains. Stoch Proc Appl, 2000, 87, 281–297

    Article  MATH  Google Scholar 

  3. Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A, 2000, 43: 1051–1059

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen M F. From Markov Chains to Non-Equilibrium Particle Systems, 2nd ed. Singapore: Word Scientific, 2004

    MATH  Google Scholar 

  5. Chen M F. Eigenvalues Inequalities and Ergodic Theory. New York: Springer-Verlag, 2005

    MATH  Google Scholar 

  6. van Doorn E A, Schrijne P. Analysis of random walks using orthogonal polynomials. J Comput Appl Math, 2000, 99: 387–399

    Google Scholar 

  7. Gulati C M, Hill J M. A note on an alternative derivation of random walk probabilities. Sankhya Ser A, 1981, 43: 379–383

    MATH  MathSciNet  Google Scholar 

  8. Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Beijing: Science Press, 1978

    Google Scholar 

  9. Mao Y H. Convergence rates in strong ergodicity for Markov processes. Stoch Proc Appl, 2006, 116: 1964–1976

    Article  MATH  Google Scholar 

  10. Mao Y H, Zhang W Y. Some results on ergodicity for Markov chains (in Chinese). J Beijing Normal Univ (Sci Ed), 2004, 40: 437–440

    MATH  MathSciNet  Google Scholar 

  11. Mao Y H, Zhang Y H. Exponential ergodicity for single birth processes. J Appl Probab, 2004, 41: 1022–1032

    Article  MATH  MathSciNet  Google Scholar 

  12. Meyn S, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993

    MATH  Google Scholar 

  13. Roberts G O, Tweedie R L. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains. J Appl Probab, 2001, 38: 37–41

    Article  MathSciNet  Google Scholar 

  14. Sokal A D, Thomas L E. Exponential convergence to equilibrium for a class of random-walk models. J Stat Phys, 1989, 54: 797–828

    Article  MATH  MathSciNet  Google Scholar 

  15. Yosida K. Functional Analysis, 6th ed. New York: Springer-Verlag, 1980

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hua Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, YH. Convergence rates for reversible Markov chains without the assumption of nonnegative definite matrices. Sci. China Math. 53, 1979–1988 (2010). https://doi.org/10.1007/s11425-010-3139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3139-z

Keywords

MSC(2000)

Navigation