Skip to main content
Log in

The structural elucidation of Eisenstein’s formula

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we shall give a complete structural description of generalizations of the classical Eisenstein formula that expresses the first periodic Bernoulli polynomial as a finite combination of cotangent values, as a relation between two bases of the vector space of periodic Dirichlet series. We shall also determine the limiting behavior of them, giving rise to Gauss’ famous closed formula for the values of the digamma function at rational points on the one hand and elucidation of Eisenstein-Wang’s formulas in the context of Kubert functions on the other.

W shall reveal that most of the relevant previous results are the combinations of the generalized Eisenstein formula and the functional equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol T M. Theorems on generalized Dedekind sums. Pacific J Math, 1952, 2: 1–9

    MATH  MathSciNet  Google Scholar 

  2. Balasubramanian R, Ding L P, Kanemitsu S, et al. On the partial fraction expansion for the cotangent-like function. Proc Chandigarh Intern Conf, Ramanujan Math Soc Lect Notes Ser, 2007, 4: 19–34

    Google Scholar 

  3. Chakraborty K, Kanemitsu S, Li H L. On the values of a class of Dirichlet series at rational arguments. Proc Amer Math Soc, 2010, 138: 1223–1230

    Article  MATH  MathSciNet  Google Scholar 

  4. Chakraborty K, Kanemitsu S, Tsukada H. Vistas of Special Functions II. Singapore-London-New York: World Scientific, 2009

    Book  Google Scholar 

  5. Chakraborty K, Kanemitsu S, Tanigawa Y, Wang X H. The modular relation and the Euler digamma function. Kyushu J Math, to appear

  6. Cvijović D, Klinowski J. New formula for the Bernoulli and Euler polynomials at rational arguments. Proc Amer Math Soc, 1995, 123: 1527–1535

    MATH  MathSciNet  Google Scholar 

  7. Cvijović D, Klinowski J. Closed form summation of some trigonometric series. Math Comput, 1995, 64: 205–210

    MATH  Google Scholar 

  8. Eisenstein G, Aufgaben und Lehrsätze. J Reine Angew Math, 1844, 27: 281–283

    MATH  Google Scholar 

  9. Girstmair K. Letter to the editor. J Number Theory, 1986, 23: 405–406

    Article  MATH  MathSciNet  Google Scholar 

  10. Hashimoto M, Kanemitsu S, Toda M. On Gauss’ formula for ψ and finite expressions for the L-series at 1. J Math Soc Japan, 2008, 60: 219–236

    Article  MATH  MathSciNet  Google Scholar 

  11. Ishibashi M. An elementary proof of the generalized Eisenstein formula. Sitzungsber Österreich Wiss Wien, Math Naturwiss Kl, 1988, 197: 443–447

    MATH  MathSciNet  Google Scholar 

  12. Ishibashi M, Kanemitsu S. Dirichlet series with periodic coefficients. Res Math, 1999, 35: 70–88

    MATH  MathSciNet  Google Scholar 

  13. Kanemitsu S. On evaluation of certain limits in closed form. In: J M De Koninck & C Levesque eds. Théorie des Nombres. Berlin: Walter de Gruyter, 1989, 459–474

    Google Scholar 

  14. Kanemitsu S, Kuzumaki T. On a generalization of the Maillet determinant II. Acta Arith, 2001, 99: 343–361

    Article  MATH  MathSciNet  Google Scholar 

  15. Kanemitsu S, Tsukada H. Vistas of Special Functions. Singapore-London-New York: World Scientific, 2007

    Book  MATH  Google Scholar 

  16. Lehmer D H. Euler constants for arithmetical progressions. Acta Arith, 1975, 27: 125–142

    MATH  MathSciNet  Google Scholar 

  17. Lewin L. Structural properties of polylogarithms, Math Surveys vol. 37. Providence: AMS, 1991

    Google Scholar 

  18. Mathews G B. The Theory of Numbers. 2nd ed. Cambridge: Chelsea, 1892

    Google Scholar 

  19. Milnor J. On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign Math, 1983, 29: 281–322

    MATH  MathSciNet  Google Scholar 

  20. Murty M R, Saradha N. Transcendental values of the digamma function. J Number Theory, 2007, 125: 298–318

    Article  MATH  MathSciNet  Google Scholar 

  21. Rieger G J. Dedekindsche Summen in algebraischen Zahlkörpern. Math Ann, 1967, 141: 377–383

    Article  MathSciNet  Google Scholar 

  22. Srivatava H M S, Choi J S. Series Associated with the Zeta and Related Functions. Dordrecht-Boston-London: Kluwer Academic Publishers, 2001

    Google Scholar 

  23. Wang K. On Maillet determinant. J Number Theory, 1984, 18: 306–312

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang K. Exponential sums of Lerch’s zeta functions. Proc Amer Math Soc, 1985, 95: 11–15

    MATH  MathSciNet  Google Scholar 

  25. Yamamoto Y. Dirichlet series with periodic coefficients. In: Proc Intern Sympos, Algebraic Number Theory. Kyoto: JSPS, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiLong Li.

Additional information

Dedicated to Professor Wang Yuan on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Hashimoto, M. & Kanemitsu, S. The structural elucidation of Eisenstein’s formula. Sci. China Math. 53, 2341–2350 (2010). https://doi.org/10.1007/s11425-010-3086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3086-8

Keywords

MSC(2000)

Navigation