Skip to main content
Log in

High order compact schemes for gradient approximation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose three gradient recovery schemes of higher order for the linear interpolation. The first one is a weighted averaging method based on the gradients of the linear interpolation on the uniform mesh, the second is a geometric averaging method constructed from the gradients of two cubic interpolation on macro element, and the last one is a local least square method on the nodal patch with cubic polynomials. We prove that these schemes can approximate the gradient of the exact solution on the symmetry points with fourth order. In particular, for the uniform mesh, we show that these three schemes are the same on the considered points. The last scheme is more robust in general meshes. Consequently, we obtain the superconvergence results of the recovered gradient by using the aforementioned results and the supercloseness between the finite element solution and the linear interpolation of the exact solution. Finally, we provide several numerical experiments to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska I, Rheinboldt W. A posteriori error estimates for the finite element method. Internat J Numer Methods Engrg, 1978, 12: 1597–1615

    Article  MATH  Google Scholar 

  2. Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. In: Numerical Mathematics and Scientific Computation. New York: Oxford University Press, 2001

    Google Scholar 

  3. Bank R E, Xu J. Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence. SIAM J Numer Anal, 2003, 41: 2294–2312

    Article  MATH  MathSciNet  Google Scholar 

  4. Blum H, Lin Q, Rannacher R. Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer Math, 1986, 49: 11–37

    Article  MATH  MathSciNet  Google Scholar 

  5. Bramble J, Hilbert S. Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J Numer Anal, 1970, 7: 112–124

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen C, Huang Y. High Accuracy Theory of Finite Element Methods (in Chinese). Changsha: Hunan Science Press, 1995

    Google Scholar 

  7. Douglas J Jr, Dupont T, Wheeler M F. Some superconvergence results for an H1-Galerkin procedure for the heat equation. In: Lecture Notes in Computer Science, no. 10. Berlin: Springer-Verlag, 1974, 288–309

    Google Scholar 

  8. Douglas J Jr, Dupont T, Wheeler M F. An L estimate and superconvergence resulte for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal Numer, 1974, 8: 61–66

    MathSciNet  Google Scholar 

  9. Du Q, Faber V, Gunzburger M. Centroidal voronoi tessellations: applications and algorithms. SIAM Review, 1999, 41: 637–676

    Article  MATH  MathSciNet  Google Scholar 

  10. Goodsell G, Whiteman J R. Superconvergence of recovered gradients of piecewise quadratic finite element approximations. Numer Methods Partial Differential Equations, 1991, 7: 61–83

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang Y, Qin H, Wang D. Centroidal voronoi tessellation-based finite element superconvergence. Internat J Numer Methods Engrg, 2008, 76: 1819–1839

    Article  MathSciNet  Google Scholar 

  12. Lakhany A M, Marek I, Whiteman J R. Superconvergence results on mildly structured triangulations. Comput Methods Appl Mech Engrg, 2000, 189: 1–75

    Article  MATH  MathSciNet  Google Scholar 

  13. Lin Q, Xu J. Linear finite elements with high accuracy. J Comput Math, 1985, 2: 115–133

    MathSciNet  Google Scholar 

  14. Lin Q, Zhu Q. Asymptotic expansion for the derivative of finite elements. J Comput Math, 1984, 2: 361–363

    MATH  MathSciNet  Google Scholar 

  15. Thomee V. High order local approximations to derivatives in the finite element method. Math Comp, 1977, 31: 652–660

    Article  MATH  MathSciNet  Google Scholar 

  16. Wahlbin L B. Superconvergence in Galkerkin Finite Element Methods. Berlin: Springer-Verlag, 1995

    Google Scholar 

  17. Xu J, Zhang Z. Analysis of recovery type a posteriori error estimators for mildly structured grids. Math Comp, 2004, 73: 1139–1152

    Article  MATH  MathSciNet  Google Scholar 

  18. Yin L. The Teaching Materials for Finite Element Method. Beijing: Peking University Press, 1988

    Google Scholar 

  19. Zhang Z, Zhu J. Superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I). Comput Methods Appl Mech Engrg, 1995, 123: 173–187

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang Z, Victory Jr H D. Mathematical analysis of Zienkiewicz-Zhu’s derivative patch recovery technique for quadrilateral finite elements. Numer Methods Partial Differential Equations, 1996, 12: 507–524

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhu Q, Lin Q. Finite Element Superconvergence Theory (in Chinese). Changsha: Hunan Science Press, 1989

    Google Scholar 

  22. Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Mech Engrg, 1992, 101: 207–224

    Article  MATH  MathSciNet  Google Scholar 

  23. Zienkiewicz O C, Zhu J Z. The supercovergent patch recovery and a posteriori error estimates. Internat J Numer Methods Engrg, 1992, 33: 1331–1382

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunQing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Liang, Q. & Yi, N. High order compact schemes for gradient approximation. Sci. China Math. 53, 1903–1918 (2010). https://doi.org/10.1007/s11425-010-3081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3081-0

Keywords

MSC(2000)

Navigation