Skip to main content
Log in

Arbitrariness of the general solution of the partial differential equations and its applications

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Using the framework of formal theory of partial differential equations, we consider a method of computation of the bi-Hilbert polynomial (i.e. Hilbert polynomial in two variables). Furthermore, present an approach to compute the number of arbitrary functions of positive differential order in the general solution. Then, under the “AC=BD” model for mathematics mechanization developed by Hong-qing ZHANG, we present a method to reduce an overdetermined system to a well-determined one. As applications, the Maxwell equations and weakly overdetermined equations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ampère A M. Considérations Générales sur les Intégrales des Équations aux Différentielles Partielles. J École Polytéchnique, 1815, 10: 549–611

    Google Scholar 

  2. Einstein A. Appendix II. Generalization of Gravitation Theory. The Meaning of Relativity, 4th ed. Princeton: Princeton University Press, 1953, 135–165

    Google Scholar 

  3. Hausdorf M, Seiler W M. On the numerical analysis of overdetermined linear partial differential systems. Lecture Notes in Computer Science, 2003, 2630: 152–167

    Article  MathSciNet  Google Scholar 

  4. Hermann R. The Geometry of Non-Linear Differential Equations, Bäcklund Transformations, and Solitons, Part A. Interdisciplinary Mathematics XII. Brookline: Math Sci Press, 1976

    Google Scholar 

  5. Johnson J. Differential dimension polynomials and a fundamental theorem on differential modules. Amer J Math, 1969, 91: 239–248

    Article  MATH  MathSciNet  Google Scholar 

  6. Johnson J. Kahler differentials and differential algebra in arbitray characteristic. Trans Amer Math Soc, 1974, 192: 201–208

    Article  MATH  MathSciNet  Google Scholar 

  7. Kolchin E R. The notion of dimension in the theory of algebraic differential equations. Bull Amer Math Soc, 1964, 70: 570–573

    Article  MATH  MathSciNet  Google Scholar 

  8. Kolchin E R. Differential Algebra and Algebraic Groups. New York, Academic Press, 1973

    MATH  Google Scholar 

  9. Kondratieva M V. A minimal dimension polynomial of the extension of a field that is given by a system of linear differential equations. Translated from Matematicheskie Zametki, 1989, 45: 80–86

    Google Scholar 

  10. Kondratieva M V, Levin A B, Mikhalev A V, et al. Differential and Difference Dimension Polynomials. Dordrecht: Kluwer Academic Publishers, 1999

    MATH  Google Scholar 

  11. Kondratieva M V, Levin A B, Mikhalev A V, et al. Computation of dimension polynomials. Intern J Algebra Comput, 1992, 2: 117–137

    Article  Google Scholar 

  12. Levin A. Computation of Hilbert polynomials in two variables. J Symbol Comput, 1999, 28: 681–710

    Article  MATH  Google Scholar 

  13. Levin A. Reduced Gröbner bases, free difference-differential modules and difference-differential dimension polynomials. J Symbol Comput, 2000, 30: 357–382

    Article  MATH  Google Scholar 

  14. Levin A. Multivariable dimension polynomials and new invariants of differential field extensions. Intern J Math Soc, 2001, 27: 201–214

    Article  MATH  Google Scholar 

  15. Levin A. Multivariable difference dimension polynomials. J Math Sci, 2005, 131: 6060–6082

    Article  MATH  MathSciNet  Google Scholar 

  16. Pommaret J F. Systems of Partial Differential Equations and Lie Pseudogroups. London: Gordon & Breach, 1978

    MATH  Google Scholar 

  17. Reid G J. Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur J Appl Math, 1991, 2: 293–318

    Article  MATH  Google Scholar 

  18. Saunders D J. The Geometry of Jet Bundles. London Mathematical Society Lecture Notes Series 142. Cambridge: Cambridge University Press, 1989

    MATH  Google Scholar 

  19. Seiler W M. Analysis and Application of the Formal Theory of Partial Differential Equations. Thesis submitted for the degree of Doctor of Philosophy, Lancaster University, 1994

  20. Seiler W M. On the arbitrariness of the general solution of an involutive partial differential equation. J Math Phys, 1994, 35: 486–498

    Article  MATH  MathSciNet  Google Scholar 

  21. Seiler W M. Arbitrariness of the generral solution and symmetries. Acta Appl Math, 1995, 41: 311–322

    Article  MATH  MathSciNet  Google Scholar 

  22. Sit W. Differential dimension polynomials of finitely generated extensions. Proc Amer Math Soc, 1978, 68: 251–257

    MATH  MathSciNet  Google Scholar 

  23. von Weber E. Partielle Differentialgleichungen. Enzyklopädie der mathematischen Wissenschaften, 1900, 2: 294–399

    Google Scholar 

  24. Xie F D, Zhang H Q. The dimension of the linear differential ideal. J Lanzhou University (Natural Sciences), 2003, 39: 4–7

    MATH  MathSciNet  Google Scholar 

  25. Zhang H Q. The AC = BD model for mathematics mechanization. J Sys Sci & Math Sci, 2008, 28: 1030–1039

    MATH  Google Scholar 

  26. Zhang H Q, Ding Q. Analytic solutions of a class of nonlinear partial differential equations. Appl Math Mech, 2008, 29: 1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Q., Zhang, H. Arbitrariness of the general solution of the partial differential equations and its applications. Sci. China Math. 53, 1731–1741 (2010). https://doi.org/10.1007/s11425-010-3011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3011-1

Keywords

MSC(2000)

Navigation