Skip to main content
Log in

Convergence analysis of the adaptive finite element method with the red-green refinement

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the convergence of the adaptive conforming P 1 element method with the red-green refinement. Since the mesh after refining is not nested into the one before, the Galerkin-orthogonality does not hold for this case. To overcome such a difficulty, we prove some quasiorthogonality instead under some mild condition on the initial mesh (Condition A). Consequently, we show convergence of the adaptive method by establishing the reduction of some total error. To weaken the condition on the initial mesh, we propose a modified red-green refinement and prove the convergence of the associated adaptive method under a much weaker condition on the initial mesh (Condition B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: John Wiley Sons, 2000

    MATH  Google Scholar 

  2. Babuska I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754

    Article  MATH  MathSciNet  Google Scholar 

  3. Bank R E. The efficient implementation of local mesh refinement algorithms. In: Babuska I, Chandra J, Flaherty J E, eds. Adaptive Computational Methods For Partial Differential Equations. Philadelphia: SIAM, 1983

    Google Scholar 

  4. Bank R E. PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: User’s Guide 6.0. Philadelphia: SIAM, 1990

    Google Scholar 

  5. Bank R E, Sherman A H, Weiser A. Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman R S et al. eds. Scientific Computing. Amsterdam: North-Holland, 1983, 3–17

    Google Scholar 

  6. Becker R, Mao S. An optimally convergent adaptive mixed finite element method. Numer Math, 2008, 111: 35–54

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner S C; Scott L R. The Mathematical Theory of Finite Element Methods, 2nd ed. New York: Springer Verlag, 2002

    MATH  Google Scholar 

  8. Carstensen C, Hoppe R H W. Convergence analysis of an adaptive nonconforming finite element methods. Numer Math, 2006, 103: 251–266

    Article  MATH  MathSciNet  Google Scholar 

  9. Carstensen C, Hoppe R H W. Error reduction and convergence for an adaptive mixed finite element method. Math Comp, 2006, 75: 1033–1042

    Article  MATH  MathSciNet  Google Scholar 

  10. Cascon J M, Kreuzer Ch, Nochetto R H, et al. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal, 2008, 46: 2524–2550

    Article  MATH  MathSciNet  Google Scholar 

  11. Cervenka J. URL: http://www.iue.tuwien.ac.at/phd/cervenka/node14.html

  12. Chen L, Holst M J, Xu J C. Convergence and optimality of adaptive mixed finite element methods. Math Comp, 2009, 78: 35–53

    Article  MathSciNet  Google Scholar 

  13. Dörfler W. A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal, 1996, 33: 1106–1124

    Article  MATH  MathSciNet  Google Scholar 

  14. Fleischmann P. URL: http://www.iue.tuwien.ac.at/phd/fleischmann/node23.html

  15. Hu J, Shi Z C, Xu J C. The convergence of the adaptive Morley-type elements. Numer Math, 2009, 112: 25–40

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu J, Xu J C. Convergence of adaptive conforming and nonconforming finite methods for the perturbed stokes equation. Research Report. Peking University, Beijing, 2007

    Google Scholar 

  17. Leitner E, Selberherr S. Three-dimensional grid adaptation using a mixed-element decomposition method Simulation of Semiconductor Devices and Processes. Wien, Austria. Springer, 1995, 464–467

    Google Scholar 

  18. Molino N, Bridson R, Teran J, et al. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of the 12th International Meshing Roundtable. Samta Fe, NM: Sandia National Laboratories, 2003, 103–114

    Google Scholar 

  19. Morin P, Nochetto R H, Siebert K G. Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal, 2000, 38: 466–488

    Article  MATH  MathSciNet  Google Scholar 

  20. Morin P, Nochetto R H, Siebert K G. Convergence of adaptive finite element methods. SIAM Rev, 2002, 44: 631–658

    Article  MATH  MathSciNet  Google Scholar 

  21. Taakili A, Becker R. URL: http://web.univ-pau.fr/~becker/ConchaBase/ConchaBasePool/RedGreen/

  22. Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Chichester: Wiley-Teubner, 1996

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Hu, J. & Shi, Z. Convergence analysis of the adaptive finite element method with the red-green refinement. Sci. China Math. 53, 499–512 (2010). https://doi.org/10.1007/s11425-009-0200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0200-x

Keywords

MSC(2000)

Navigation