Skip to main content
Log in

A curve flow evolved by a fourth order parabolic equation

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We study a fourth order curve flow, which is the gradient flow of a functional describing the shapes of human red blood cells. We prove that for any smooth closed initial curve in ℝ2, the flow has a smooth solution for all time and the solution subconverges to a critical point of the functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dziuk G, Kuwert E. and Schätzle R. Evolution of elastic curves in ℝn: existence and computation. SIAM J Math Anal, 33(5): 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch, 28: 693–703 (1973)

    MathSciNet  Google Scholar 

  3. Polden A. Closed curves of least total curvature. SFB 382, Universität Tübingen, Tübingen, Germany, 1995

    Google Scholar 

  4. Polden A. Curvature and surfaces of least total curvature and fourth-order flows. PhD dissertation. Tübingen, Germany: Universität Tübingen, 1996

    Google Scholar 

  5. Kohsaka Y, Nagasawa T. On the existence for the Helfrich flow and its center manifold near spheres. Differential Intergral Equations, 19(2): 121–142 (2006)

    MathSciNet  Google Scholar 

  6. Kuwert E, Schätzle R. The Willmore flow with small initial energy. J Differential Geom, 57(3): 409–441 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Kuwert E, Schätzle R. Gradient flow for the Willmore functional. Comm Anal Geom, 10(2): 307–339 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Simonett G. The Willmore flow near spheres. Differential Intergral Equations. 14(8): 1005–1014 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Jian H Y, Xu X W. The vortex dynamics of Ginzburg-Landau system under pinning effect. Sci China Ser A, 46: 488–498 (2003)

    MathSciNet  Google Scholar 

  10. Gage M, Hamilton R S. The heat equation shrinking convex plane curves. J Differential Geom, 23: 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Jian H Y, Liu Y N. Ginzburg-Landau vortex and mean curvature flow with external force field. Acta Math Sin Engl Ser, 22(6): 1831–1842 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jian H Y, Liu Y N. Long-time existence of mean curvature flow with external force fields. Pacific J Math, 234(2): 311–315 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu Y N, Jian H Y. Evolution of hypersurfaces by mean curvature minus external force field. Sci China Ser A, 50: 231–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiYu Jian.

Additional information

This work was supported by Postdoctoral Science Foundation of China, National Natural Science Foundation of China (No. 10631020, 10871061) and the Grant for PhD Program of Ministry of Education of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Jian, H. A curve flow evolved by a fourth order parabolic equation. Sci. China Ser. A-Math. 52, 2177–2184 (2009). https://doi.org/10.1007/s11425-009-0143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0143-2

Keywords

MSC(2000)

Navigation