Skip to main content
Log in

Asymptotic stability of monostable wavefronts in discrete-time integral recursions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The aim of this work is to study the traveling wavefronts in a discrete-time integral recursion with a Gauss kernel in ℝ2. We first establish the existence of traveling wavefronts as well as their precise asymptotic behavior. Then, by employing the comparison principle and upper and lower solutions technique, we prove the asymptotic stability and uniqueness of such monostable wavefronts in the sense of phase shift and circumnutation. We also obtain some similar results in ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bates P W, Fife P C, Ren X, et al. Traveling waves in a convolution model for phase transition. Arch Ration Mech Anal, 1997, 138: 105–136

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen X, Fu S, Guo J S. Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J Math Anal, 2006, 38: 233–258

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen X, Guo J S. Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations. J Diifferential Equations, 2002, 184: 549–569

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheng C P, Li W T, Wang Z C. Spreading speeds and traveling waves in a delayed population model with stage structure on a 2D spatial lattice. IMA J Appl Math, 2008, 73: 592–618

    Article  MATH  MathSciNet  Google Scholar 

  5. Diekmann O. Thresholds and traveling waves for the geographical spread of infection. J Math Biol, 1978, 6: 109–130

    Article  MATH  MathSciNet  Google Scholar 

  6. Diekmann O. Run for your life. A note on the asymptotic speed of propagation of an epidemic. J Differential Equations, 1979, 33: 58–73

    Article  MATH  MathSciNet  Google Scholar 

  7. Fisher R. The wave of advance of advantageous gene. Ann Eugen, 1937, 7: 355–369

    Google Scholar 

  8. Kolmogorov A N, Petrovskii I G, Piskunov N S. Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem. Byul Mosk Gos Univ Ser A Mat Mekh, 1937, 1: 1–26

    Google Scholar 

  9. Kot M. Discrete-time travelling waves: Ecological examples. J Math Biol, 1992, 30: 413–436

    Article  MATH  MathSciNet  Google Scholar 

  10. Lewis M A. Spread rate for a nonlinear stochastic invasion. J Math Biol, 2000, 41: 430–454

    Article  MATH  MathSciNet  Google Scholar 

  11. Lewis M A, Li B, Weinberger H F. Spreading speed and linear determinacy for two-species competition models. J Math Biol, 2002, 45: 219–233

    Article  MATH  MathSciNet  Google Scholar 

  12. Li B, Lewis M A, Weinberger H F. Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol, 2009, 58: 323–338

    Article  MATH  MathSciNet  Google Scholar 

  13. Li B, Weinberger H F, Lewis M A. Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci, 2005, 196: 82–98

    Article  MATH  MathSciNet  Google Scholar 

  14. Liang X, Zhao X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2006, 60: 1–40

    Article  MathSciNet  Google Scholar 

  15. Lui R. Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math Biosci, 1989, 93: 269–295

    Article  MATH  MathSciNet  Google Scholar 

  16. Lui R. Biological growth and spread modeled by systems of recursions. II Biological theory. Math Biosci, 1991, 107: 255–287

    Article  Google Scholar 

  17. Lutscher F. Density-dependent dispersal in integrodi®erence equations. J Math Biol, 2008, 56: 499–524

    Article  MATH  MathSciNet  Google Scholar 

  18. Ma S, Zou X. Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monotone equation with delay. J Differential Equations, 2005, 217: 54–87

    Article  MATH  MathSciNet  Google Scholar 

  19. Mischaikow K, Hutson V. Travelling waves for mutualist species. SIAM J Math Anal, 1993, 24: 987–1008

    Article  MATH  MathSciNet  Google Scholar 

  20. Sattinger D H. On the stability of waves of nonlinear parabolic systems. Adv Math, 1976, 22: 312–355

    Article  MATH  MathSciNet  Google Scholar 

  21. Smoller J. Shock Waves and Reaction Diffusion Equations. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  22. Thieme H R. Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J Reine Angew Math, 1979, 306: 94–121

    MATH  MathSciNet  Google Scholar 

  23. Thieme H R. Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J Math Biol, 1979, 8: 173–187

    Article  MATH  MathSciNet  Google Scholar 

  24. Thieme H R, Zhao X Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J Differential Equations, 2003, 195: 430–470

    Article  MATH  MathSciNet  Google Scholar 

  25. Volpert A I, Volpert V A, Volpert V A. Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs 140. Providence: AMS, 1994

    Google Scholar 

  26. Wang Z C, Li WT, Ruan S. Existence, uniqueness and asymptotic stability of traveling wave fronts in nonlocal reaction diffusion equations with delay. J Dynam Differential Equations, 2008, 20: 573–607

    Article  MATH  MathSciNet  Google Scholar 

  27. Weinberger H F. Long-time behavior of a class of biological model. SIAM J Math Anal, 1982, 13: 353–396

    Article  MATH  MathSciNet  Google Scholar 

  28. Weinberger H F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol, 2002, 45: 511–548

    Article  MATH  MathSciNet  Google Scholar 

  29. Weinberger H F, Kawasaki K, Shigesada N. Spreading speeds of spatially periodic integro-di®erence models for populations with non-monotone recruitment functions. J Math Biol, 2008, 57: 387–411

    Article  MATH  MathSciNet  Google Scholar 

  30. Weinberger H F, Lewis M A, Li B. Analysis of linear determinacy for spread in cooperative models. J Math Biol, 2002, 45: 183–218

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiGui Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, G., Li, W. & Ruan, S. Asymptotic stability of monostable wavefronts in discrete-time integral recursions. Sci. China Math. 53, 1185–1194 (2010). https://doi.org/10.1007/s11425-009-0123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0123-6

Keywords

MSC(2000)

Navigation