Skip to main content
Log in

The fractal structures of the exceptional sets of Lévy processes

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In this paper we review some results on the fractal geometry properties of the sets of thick points, thin points, fast points and slow points derived from Lévy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor S J. The measure theory of random fractals. Math Proceed Camb Phil Soc, 100: 383–406 (1986)

    Article  MATH  Google Scholar 

  2. Xiao Y. Random Fractals and Markov Processes, Fractal Geometry and Applications, A Jubilee of Benoit Mandelbrot. M. L. Lapidus, M.V. Frankenhuijsen, eds. Providence, RI: Amer Math Soc, 261–338, 2004

    Google Scholar 

  3. Ciesielski Z, Taylor S J. First passage and sojourn times and the exact Hausdorff measure of the sample path. Trans Amer Math Soc, 103: 434–452 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ray D. Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans Amer Math Soc, 106: 436–444 (1963)

    Article  MathSciNet  Google Scholar 

  5. Taylor S J, Wendel J G. The exact Hausdorff measure of the zero set of a stable process. Z W, 6: 170–180 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Taylor S J. The use of packing measure in the analysis of random sets. In: Stochastic Process and Their Applications. Lecture Notes in Mathematics, Vol 1203. New York: Springer, 1986, 214–222

    Chapter  Google Scholar 

  7. Perkins E A, Taylor S J. Uniform measure results for the image of subsets under Brownian motion. Probab Theory Related Fields, 76: 257–289 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Orey S, Taylor S J. How often on a Brownian path does the law of iterated logarithm fail? Proc Lond Math Soc, 28: 174–192 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu X, Taylor S J. The multifractal structure of stable occupation measure. Stochastic Process Appl, 66: 283–299 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hawkes J. A lower Lipschitz condition for a stable subordinator. Z W, 17: 23–32 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shieh N R, Taylor S J. Logarithmic multifractal spectrum of a stable occupation measure. Stochastic Process Appl, 75: 249–269 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dembo A, Peres Y, Rosen J, Thick points for spatial Brownian motion: Multifractal analysis of occupation measure. Ann Probab, 28: 1–35 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Taylor S J. Regularity of irregularities on a Brownian path. Ann Inst Fourier (Grenoble), 39: 195–203

  14. Taylor S J. Sample path properties of a transient stable process. J Math Mech, 16: 1229–1246 (1967)

    MATH  MathSciNet  Google Scholar 

  15. Dembo A, Peres Y, Rosen J, et al. Thick points for transient symmetric stable processes. Electron J Probab, 10: 1–13 (1999)

    MathSciNet  Google Scholar 

  16. Dembo A, Peres Y, Rosen J, et al. Thin points for Brownian motion. Ann Inst H Poincaré, Probab Statist, 36: 749–774 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marsalle L. Slow points and fast points of local times. Ann Probab, 27(1): 150–165 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fristedt B E, Pruitt W E. Lower functions for increasing random walks and subordinators. Z W, 18: 167–182 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fristedt B E, Pruitt W E. Uniform lower functions for subordinators. Z W, 24: 63–70 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu X, Taylor S J. Multifractal structure of a general subordinator. Stochastic Process Appl, 88: 245–258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dembo A, Peres Y, Rosen J, et al. Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk. Acta Math, 186: 239–270 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Erdös P, Taylor S J. Some problems concerning the structure of random walk paths. Acta Sci Hung, 11: 137–162 (1960)

    Article  MATH  Google Scholar 

  23. Olsen L. A multifractal formalism. Adv Math, 116: 82–186 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hu X. Some fractal sets determined by stable processes. Probab Theory Related Fields, 100: 205–225 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shen D, Hu X. The multifractal structure of the product of two independent stable occupation measures. submitted

  26. Kong L, Hu X. The multifractal structure of the product measure of two independent general subordinators. Sci China Ser A, 52, to appear

  27. Khoshnevisan D, Peres Y, Xiao Y. Limsup random fractals. Electron J Probab, 5(4): 1–24 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYu Hu.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 10871200)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Shen, D. & Hu, X. The fractal structures of the exceptional sets of Lévy processes. Sci. China Ser. A-Math. 52, 1459–1466 (2009). https://doi.org/10.1007/s11425-009-0107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0107-6

Keywords

MSC(2000)

Navigation