Skip to main content
Log in

Holomorphic curvature of complex Finsler submanifolds

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let \( \mathcal{M} \) be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric \( \mathcal{F} \). Let D be the complex Rund connection associated to (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection ∇ on (\( \mathcal{M},\mathcal{F} \)) and the holomorphic curvature of the intrinsic complex Rund connection ∇* on (\( \mathcal{M},\mathcal{F} \)) coincide; (b) the holomorphic curvature of ∇* does not exceed the holomorphic curvature of D; (c) (\( \mathcal{M},\mathcal{F} \)) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (\( \mathcal{M},\mathcal{F} \)) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (\( \mathcal{M},\mathcal{F} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate M, Patrizio G. Finsler metrics-A global approach with applications to geometric function theory. In: Lecture Notes in Mathematics, Vol. 1591. Berlin-Heidelberg: Springer-Verlag, 1994

    Google Scholar 

  2. Aikou T. A partial connection on complex Finsler bundles and its applications. Illinois J Math, 1998, 42: 481–492

    MATH  MathSciNet  Google Scholar 

  3. Aikou T. Conformal flatness of complex Finsler structures, Publ Math Debrecen, 1999, 54: 165–179

    MATH  MathSciNet  Google Scholar 

  4. Bejancu A, Farran H R. Geometry of Pseudo-Finsler Submanifolds. Dordrecht: Kluwer Academic Publishers, 2000

    MATH  Google Scholar 

  5. Kobayashi S. Negative vector bundles and complex Finsler structures. Nagoya Math J, 1975, 57: 153–166

    MATH  MathSciNet  Google Scholar 

  6. Munteanu G. Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Dordrecht: Kluwer Academic Publishers, 2004

    MATH  Google Scholar 

  7. Munteanu G. The equations of a holomorphic subspace in a complex Finsler space. Period Math Hungar, 2007, 55: 97–112

    Article  MATH  MathSciNet  Google Scholar 

  8. Munteanu G. Totally geodesic holomorphic subspaces. Nonlinear Analysis: Real World Applications, 2007, 8: 1132–1143

    Article  MATH  MathSciNet  Google Scholar 

  9. Rund H. The curvature theory of direction-dependent connections on complex manifolds. Tensor NS, 24: 189–205

  10. Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific Publishing, 1984

    MATH  Google Scholar 

  11. Zhong C P, Zhong T D. Horizontal \( \bar \partial \)-Laplacian on complex Finsler manifolds. Sci China Ser A, 2005, 48: 377–391

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhong C P, Zhong T D. Hodge decomposition theorem on strongly Kähler Finsler manifolds. Sci China Ser A, 2006, 49: 1696–1714

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhong C P. On the fundamental formulas of complex Finsler submanifolds. J Geom Phys, 2008, 58: 423–449

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunPing Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, C. Holomorphic curvature of complex Finsler submanifolds. Sci. China Math. 53, 261–274 (2010). https://doi.org/10.1007/s11425-009-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0044-4

Keywords

MSC(2000)

Navigation