Skip to main content
Log in

Riesz multiwavelet bases generated by vector refinement equation

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(ℝs). Suppose ψ = (ψ1,..., ψr)T and \( \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T \) are two compactly supported vectors of functions in the Sobolev space (H μ(ℝs))r for some μ > 0. We provide a characterization for the sequences {ψ l jk : l = 1,...,r, j ε ℤ, k ε ℤs} and \( \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s \) to form two Riesz sequences for L 2(ℝs), where ψ l jk = m j/2ψl(M j·−k) and \( \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-\nulldelimiterspace} 2}} \tilde \psi ^\ell (M^j \cdot - k) \), M is an s × s integer matrix such that lim n→∞ M n = 0 and m = |detM|. Furthermore, let ϕ = (ϕ1,...,ϕr)T and \( \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T \) be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, \( \tilde a \) and M, where a and \( \tilde a \) are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr)T and \( \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T \), ν = 1,..., m − 1 such that two sequences {ψ νl jk : ν = 1,..., m − 1, l = 1,...,r, j ε ℤ, k ε ℤs} and {\( \tilde \psi _{jk}^\nu \) : ν=1,...,m−1,ℓ=1,...,r, j ∈ ℤ, k ∈ ℤs} form two Riesz multiwavelet bases for L 2(ℝs). The bracket product [f, g] of two vectors of functions f, g in (L 2(ℝs))r is an indispensable tool for our characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averbuch A Z, Zheludev V A. A new family of spline-based biorthogonal wavelet transforms and their applications to image compression. IEEE Trans Image Process, 13: 993–1007 (2004)

    Article  MathSciNet  Google Scholar 

  2. Cohen A, Daubechies I. A new technique to estimate the regularity of refinable funtions. Rev Mat Iberoamericana, 12: 527–591 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Dahmen W. Wavelet and multiscale methods for operator equations. Acta Numer, 6: 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  4. Daubechies I. Ten Lectues on Wavelets. CMBS-NSF Series in Applied Mathematics. Philadelphia: SIAM, 1992

    Google Scholar 

  5. Ji H, Riemenschneider S D, Shen Z W. Multivariate compactly supported fundamental refinable functions duals and biorthogonal wavelets. Stud Appl Math, 102: 173–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chui C K, Lian J A. A study of orthogonal multi-wavelets. Appl Numer Math, 20: 273–298 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen A, Daubechiesa I. A stability criterion for biorthogonal wavelet bases and their related subband coding schem. Duke Math J, 68: 517–531 (1992)

    Article  Google Scholar 

  8. Han B, Jia R Q. Characterization of Riesz bases of wavelets generated from multiresolution analysis. Appl Comput Harmon Anal, 23: 321–345 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han B, Kwon S G, Park S S. Riesz multiwavelet bases. Appl Comput Harmon Anal, 20: 161–183 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jia R Q. Convergence of vector subdivision schemes and construction of biorthogonal multip wavelets. In: Lau K S, ed. Advance in Wavelets. Singapore: Springer-Verlag, 1999, 199–227

    Google Scholar 

  11. Jia R Q. Cascade algorithms in wavelet analysis. In: Zhou D X, ed. Wavelet Analysis: Twenty Years’ Developments. Singapore: World Scientific, 2002, 196–230

    Google Scholar 

  12. Jia R Q, Wang J Z, Zhou D X. Compactly supported wavelet bases for Sobolev spaces. Appl Comput Harmon Anal, 15: 224–241 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Long R L, Chen D R. Biorthogonal wavelet bases on ℝd. Appl Comput Harmon Anal, 2: 230–242 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ron A, Shen Z W. Affine systems in L 2(ℝd): the analysis of the analysis operator. J Funct Anal, 148: 408–447 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jia R Q. Shift-invariant spaces and linear operator equations. Israel J Math, 103: 259–288 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jia R Q. Stability of the shifts of a finite number of functions. J Approx Theory, 95: 194–202 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jia R Q, Micchelli C A. Using the refinement equation for the construction of pre-wavelets II: powers of two. In: Laurent P J, Le Méharté A, Schumaker L L, eds. Curves and Surfaces. New York: Academic Press, 1991, 209–246

    Google Scholar 

  18. De Boor C, Devore R, Ron A. Approximation from shift-invariant subspaces of L 2(ℝd). Trans Amer Math Soc, 341: 787–806 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jia R Q, Riemenschneider S D, Zhou D X. Vector subdivision schemes and multiple wavelets. Math Comp, 67: 1533–1563 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jia R Q, Shen Z W. Multiresolution and wavelets. Proc Edinb Math Soc, 37: 271–300 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jia R Q, Micchelli C A. On linear independence of integer translates of a finite number of functions. Proc Edinb Math Soc, 36: 69–85 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jia R Q. Bessel sequences in Sobolev spaces. Appl Comput Harmon Anal, 20: 298–311 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Han B. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math, 155: 43–67 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl Comput Harmon Anal, 18: 67–93 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meyer Y. Wavelets and Operators. Cambridge: Cambridge University Press, 1992

    MATH  Google Scholar 

  26. Villemoes L F. Sobolev regularity of wavelets and stability of iterated filter banks. In: Meyer Y, Roques S, eds. Wavelet Analysis and Applications. Paris: Editions Frontiéres, 1993, 243–251

    Google Scholar 

  27. Young R. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980

    MATH  Google Scholar 

  28. Li S, Xian J. Biorthogonal multiple wavelets generated by vector refinement equation. Sci China Ser A-Math, 50(7): 1015–1025 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiSong Liu.

Additional information

This work was supported by National Natural Science Foundation of China (Grant Nos. 10771190, 10471123)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Liu, Z. Riesz multiwavelet bases generated by vector refinement equation. Sci. China Ser. A-Math. 52, 468–480 (2009). https://doi.org/10.1007/s11425-008-0118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0118-8

Keywords

MSC(2000)

Navigation