Skip to main content
Log in

Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms. One estimator is shown to be reliable and efficient, which yields global upper and lower bounds for the error in piecewise W 1,p-seminorm. The other one is proved to give a global upper bound of the error in L p-norm. By taking the two estimators as refinement indicators, adaptive algorithms are suggested, which are experimentally shown to attain optimal convergence orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya R, Behrens E, Rodríguez R. A posteriori error estimates for problems with Dirac delta source terms. Numer Math, 105: 193–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Casas E. L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer Math, 47: 627–632 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Scott R. Finite element convergence for singular data. Numer Math, 21: 317–327 (1973/74)

    Article  MATH  MathSciNet  Google Scholar 

  4. Schatz A H, Wahlbin L B. Interior maximum norm estimtes for finite element methods. Math Comp, 31: 414–442 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen Z, Dai S. Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal, 38: 1961–1985 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Z, Dai S. On the efficiency of adaptive finite methods for elliptic problems with discontinuous coefficients. SIAM J Sci Comput, 24: 443–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hoppe W, Wohlmuth B. Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Model Math Anal Numer, 30: 237–263 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Dari E, Duran R G, Padra C, Vampa V. A posteriori error estimators for nonconforming finite element methods. RAIRO Model Math Anal Numer, 30: 385–400 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Schieweck F. A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM Math Mod Numer Anal, 36: 489–503 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math, 107: 473–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: Nort-Holland, 1978

    Book  MATH  Google Scholar 

  12. Braess D. Finite Elements. Cambridge: Cambridge University Press, 1977

    Google Scholar 

  13. Brenner S, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer, 1994

    MATH  Google Scholar 

  14. Carstensen C, Ronald H, Hoppe W. Convergence analysis of an adaptive nonconforming finite element method. Numer Math, 105: 251–266 (2006)

    Article  Google Scholar 

  15. Bartels S, Carstensen C, Dolzmann G. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer Math, 99: 1–24 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Binev P, Dahmen W, DeVore R. Adaptive finite element methods with convergence rates. Numer Math, 97: 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dörfler W. A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal, 33: 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Morin P, Nochetto R H, Siebert K G. Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal, 38: 466–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rivara M C. Mesh refinement processes based on the generalized bisection of simplices. SIAM J Numer Anal, 21: 604–613 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rivara M C, Inostroza P. Using longest-side bisection techniques for the automatic refinement for Delaunay triangulations. Intern J Nume Methods Engineering, 40: 581–597 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rivara M C, Iribarren G. The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math Comput, 65: 1485–1501 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rivara M C, Venere M. Cost analysis of the longest-side (triangle bisection) refinement algorithms for triangulations. Engineering with Computers, 12: 224–234 (1996)

    Article  Google Scholar 

  23. Babuška I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 15: 736–754 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Carstenson C, Bartels S. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part one: low order conforming, nonconforming, and mixed FEM. Math Comput, 71: 945–969 (2002)

    Article  Google Scholar 

  25. Carstensen C, Bartels S, Jansche S. A posteriori error estimates for nonconforming finite element methods. Numer Math, 92: 233–256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Carstensen C, Hu J, Orlando A. Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J Numer Anal, 45: 68–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Eriksson K, Estep D, Hansbo P, Johnson C. Introduction to adaptive methods for differential equations. Acta Numer, 4: 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  28. Morin P, Nochetto R H, Siebert K G. Local problems on stars: a posteriori error estimators, convergence, and performance. Math Comput, 72: 1067–1097 (2002)

    Article  MathSciNet  Google Scholar 

  29. Verfürth R. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996

  30. Anisworth M. A synthesis of a posteriori error estimation techniques for conforming, non-conforming and discontinuous Galerkin finite element methods. Contemp Math, 383: 1–14 (2005)

    Google Scholar 

  31. Anisworth M. Robust a posteriori error estimation for conforming, nonconforming finite element approximation. SIAM J Numer Anal, 42: 2320–2341 (2005)

    Article  MathSciNet  Google Scholar 

  32. Dauge M. Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper Theory, 15: 227–261 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Girault P, Raviart P A. Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1986

    MATH  Google Scholar 

  34. Grisvard P. Elliptic problems for non-smooth domains. Boston: Pitman, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Xie.

Additional information

This work was supported in part by the National Natural Science Foundation of China (Grant No. 10771150), the National Basic Research Program of China (Grant No. 2005CB321701), and the Program for New Century Excellent Talents in University (Grant No. NCET-07-0584)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, S., Xie, X. Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms. Sci. China Ser. A-Math. 51, 1440–1460 (2008). https://doi.org/10.1007/s11425-008-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0113-0

Keywords

MSC(2000)

Navigation