Skip to main content
Log in

Local structure-preserving algorithms for partial differential equations

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the concept of local structure-preserving algorithms (SPAs) for partial differential equations, which are the natural generalization of the corresponding global SPAs. Local SPAs for the problems with proper boundary conditions are global SPAs, but the inverse is not necessarily valid. The concept of the local SPAs can explain the difference between different SPAs and provide a basic theory for analyzing and constructing high performance SPAs. Furthermore, it enlarges the applicable scopes of SPAs. We also discuss the application and the construction of local SPAs and derive several new SPAs for the nonlinear Klein-Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo B Y. The Difference Methods for the Partial Differential Equations (in Chinese). Beijing: Science Press, 1988

    Google Scholar 

  2. Strauss W, Vázquez L. Numerical solution of a nonlinear Klein-Gordon equation. J Comput Phys, 28: 271–278 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Guo B Y, Vázquez L. A numerical scheme for nonlinear Klein-Gordon equation. J Appl Sci, 1(1): 25–32 (1983)

    Google Scholar 

  4. Guo B Y, Pascual P J. Numerical solution of the sine-Gordon equation. Appl Math Comput, 18: 1–14 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feng K, Qin M Z. The symplectic methods for computation of Hamiltonian systems. In: Zhu Y L, Guo B Y, eds. Proc Conf on Numerical Methods for PDEs, Lecture Notes in Math, Vol 1297, Berlin: Springer, 1987, 1–37

    Google Scholar 

  6. Feng K, Wu H M, Qin M Z, Wang D L. Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J Comput Math, 7(1): 71–96 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Tang Y F, Vázquez L, Zhang F, Perez-garcia V M. Symplectic methods for the nonlinear Schrödinger equation. Comp Math Appl, 32(5): 73–83 (1996)

    Article  MATH  Google Scholar 

  8. Shang Z J. KAM theorem of symplectic algorithms for Hamiltonian systems. Numer Math, 83: 477–496 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu X S, Su L W, Ding P Z. Symplectic algorithm for use in computing the time-independent Schroinger equation. Intern J Quant Chem, 87(1): 1–11 (2002)

    Article  Google Scholar 

  10. Liu L, Liao X H, Zhao C Y, et al. The application of symplectic algorithms in dynamical astronomy (III) (in Chinese). Acta Astronomica Sinica, 35(1): 51–65 (1994)

    Google Scholar 

  11. Li C W, Qin M Z. A symplectic difference scheme for infinite dimensional Hamiltonian systems. J Comput Math, 6: 164–174 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Wang Y S, Wang B, Ji Z Z, et al. High order symplectic schemes for the sine-Gordon Equation. J Phys Soc Japan, 72(11): 2731–2736 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Marsden J E, Patrick G P, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm Math Phys, 199: 351–395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bridge T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys Lett A, 284: 184–193 (2001)

    Article  MathSciNet  Google Scholar 

  15. Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J Phys A, 33(18): 3613–3626 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun Y J, Qin M Z. A multisymplectic scheme for RLW equation. J Comput Math, 22(4): 611–621 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Hong J L, Liu Y, Munthe-Kaas H, et al. Globally conservative properties and error estimation of a multisymplectic scheme for Schrödinger equations with variable coefficients. Appl Numer Math, 56(6): 814–843 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen J B. New schemes for the nonlinear Schrödinger equation. Appl Math Comput, 124(3): 371–379 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vu-Quoc L, Li S. Invariant conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Comput Methods Appl Mech Engrg, 107: 341–391 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li S, Vu-Quoc L. Finite difference calculus invariant structure of a class algorithms for the nonlinear Klein-Gordon equation. SIAM J Numer Anal, 32(6): 1839–1875 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs. J Phys A, 39: 5287–5320 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guo H Y, Wu K. On variations in discrete mechanics and field theory. J Math Phys, 44(12): 5978–6004 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang Y S, Qin M Z. Multisymplectic geometry and multisymplectic scheme for the nonlinear Klein-Gordon equation. J Phys Soc Japan, 70(3): 653–661 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zeng Q C, Zhang X H. The energy-conserving schemes for the primitive equations in sphere (in Chinese). Atmospheric Sci, 11(2): 113–127 (1987)

    MathSciNet  Google Scholar 

  25. Wang Y S, Wang B, Chen X. Multisymplectic Euler box scheme for the KdV equation. Chinese Phy Lett, 24(2): 312–314 (2007)

    Article  Google Scholar 

  26. Cai J X, Wang Y S, Wang B, et al. New multisymplectic self-adjoint scheme and its composition scheme for the Maxwell’s equation. J Math Phys, 47: 123508 (2006)

    Article  MathSciNet  Google Scholar 

  27. Yee K S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagation, 14: 302–307 (1966)

    Article  Google Scholar 

  28. Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J Comput Phys, 157: 473–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang Y S, Wang B, Qin M Z. Concatenating construction of multi-symplectic schemes for the 2+1 dimensional sine-Gordon equation. Sci China Ser A-Math, 47(1): 18–30 (2004)

    Article  MathSciNet  Google Scholar 

  30. Fen K, Qin M Z. The Hamiltonian Geometry Algorithms for the Hamiltonian System (in Chinese). Hangzhou: Science and Technology Press, 2003

    Google Scholar 

  31. Zhong W X. The Symplectic Methods in the Application Mechenics (in Chinese). Beijing: Higher Education Press, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuShun Wang.

Additional information

This work was supported by the National Basic Research Program (Grant No. 2005CB321703). The first author was supported by the National Natural Science Foundation of China (Grant Nos. 40405019, 10471067) and the Major Research Projects of Jiangsu Province (Grant No. BK2006725); the second author was supported by the National Natural Science Foundation of China (Innovation Group) (Grant No. 40221503) and the third author was supported by the National Natural Science Foundation of China (Grant No. 10471145)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, B. & Qin, M. Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A-Math. 51, 2115–2136 (2008). https://doi.org/10.1007/s11425-008-0046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0046-7

Keywords

MSC(2000)

Navigation