Skip to main content
Log in

An attempt to differential Galois theory of second order polynomial system and solvable subgroup of Möbius transformations

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

By introducing the conception “relativistic differential Galois group” for the second order polynomial systems, we establish the relation between the conformal relativistic differential Galois group and the subgroup of Möbius transformations, and prove that the system is integrable in the sense of Liouville if its conformal relativistic differential Galois group is solvable with a derived length at most 2. Some omissions on the structures of solvable subgroups of Möbius transformations at the first author’s article published in this journal in 1996 are refreshed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards H M. Galois Theory. New York: Springer-Verlag, 1984

    MATH  Google Scholar 

  2. Jacobson N. Lectures in Abstract Algebra, III. Theory of Fields and Galois Theory. New York: Springer-Verlag, 1964

    Google Scholar 

  3. Waston G N. A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: Cambridge Univ Press, 111–123 (1944)

    Google Scholar 

  4. Bluman G W, Kumei S. Symmetries and Differential Equations. New York: Springer-Verlag, 1989

    MATH  Google Scholar 

  5. Olver P J. Application of Lie Groups to Differential Equations. Berlin: Springer-Verlag, 1986

    Google Scholar 

  6. Ovsiannikov L V. Group Analysis of Differential Equations. New York: Academic Press, 1982

    MATH  Google Scholar 

  7. Kaplansky I. An Introduction to Differential Algebra, Pub. de. L’institut de Mathematique de L’universute de Nancaqo, 1957

  8. Kolchin E R. Algebraic matrix groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equation. Ann of Math, 49: 1–42 (1948)

    Article  MathSciNet  Google Scholar 

  9. Ritt J F. Differential algebra. Amer Math Soc Coll Pub, Vol.33. New York: Amer Math Soc, 1950

    MATH  Google Scholar 

  10. Glubev V V. Lectures on the analytic theory of differential equations. 2nd ed. Moscow-Leningrad: Gos Izd Tekh Teor Lit, 1950, 436 (in Russian)

    Google Scholar 

  11. II’yashenko Y S. Ordinary Differential Equation, Dynamical Systems I. Berlin-Heidelberg: Springer-Verlag, 1988, 128–130

    Google Scholar 

  12. Guan K Y, Everitt N W. On the relation between distinct particular solutions of equation y′ = Σ n i=0 a i(x)y i. Proc Roy Soc Edin, 123A: 917–926 (1993)

    MathSciNet  Google Scholar 

  13. Lei J Z. Differential Galois theory of second order polynomial system. Dissertation for the Post-Doctoral Degree. Beijing: Tsinghua University, 2003

    Google Scholar 

  14. Malgrange B. Le groupoïd de Galois d’un feuilletage. Enseignement Math, 38: 465–501 (2001)

    MathSciNet  Google Scholar 

  15. Malgrange B. On nonlinear differential galois theory. Chinese Ann Math, Ser B, 23: 219–226 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Loray F. Towards the Galois groupoid of nonlinear first order ODE. preprint, 2003

  17. Guan K Y, Cheng R Y. Global first integration and admitted lie group of second order polynomial system in complex domain, Journal of Nanjing University, 229–235 (1993) (in Chinese)

  18. Palka B P. An Introduction to Complex Function Theory. New York: Springer-Verlag, 1991

    MATH  Google Scholar 

  19. Beardon A F. The Geometry of Discrete Groups. New York: Springer-Verlag, 1983

    MATH  Google Scholar 

  20. Singer M F. Liouvillian first integrals of differential equations. Trans Amer Math Soc, 333: 673–688 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Guan K Y, Lei J Z. Integrability of second order autonomous system. Ann of Diff Eqs, 18: 117–135 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Guan K Y, Zhang S F. Structure of solvable subgroup of SL(2,C) and integrability of fuchsian equations on torus T 2. Sci China Ser A: Math, 39: 501–508 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-ying Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Ky., Lei, Jz. An attempt to differential Galois theory of second order polynomial system and solvable subgroup of Möbius transformations. SCI CHINA SER A 50, 748–760 (2007). https://doi.org/10.1007/s11425-007-2079-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-2079-8

Keywords

MSC(2000)

Navigation