Skip to main content

Characterization for commutators of n-dimensional fractional Hardy operators

Abstract

In this paper, it was proved that the commutator \(\mathcal{H}_{\beta ,b} \) generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from L p1 (ℝn) to L p2 (ℝn) if and only if b is a CṀO(ℝn) function, where 1/p 1 − 1/p 2 = β/n, 1 < p 1 < ∞, 0 ⩽ β < n. Furthermore, the characterization of \(\mathcal{H}_{\beta ,b} \) on the homogenous Herz space \(\dot K_q^{\alpha ,p} \)(ℝn) was obtained.

This is a preview of subscription content, access via your institution.

References

  1. Hardy G. Note on a theorem of Hilbert. Math Z, 6: 314–317 (1920)

    Article  Google Scholar 

  2. Anderson K, Muckenhoupt B. Weighted weak type Hardy inequalities with application to Hilbert transforms and maximal functions. Studia Math, 72: 9–26 (1982)

    Google Scholar 

  3. Golubov B. Boundedness of the Hardy and the Hardy-Littlewood operators in the spaces ReH 1 and BMO. Math Sb, 188: 1041–1054 (1997)

    Article  MATH  Google Scholar 

  4. Hardy G, Littlewood J, Polya G. Inequalities. London/New York: Cambridge Univeristy Press, 1934

    Google Scholar 

  5. Sawyer E. Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator. Trans Amer Math Soc, 1: 329–337 (1984)

    Article  Google Scholar 

  6. Long S, Wang J. Commutators of Hardy operators. J Math Anal Appl, 274: 626–644 (2002)

    Article  MATH  Google Scholar 

  7. Chirst M, Grafakos L. Best constants for two non-convolution inequalities. Proc Amer Math Soc, 123: 1687–1693 (1995)

    Article  Google Scholar 

  8. Lu S, Yang D. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 11: 72–94 (1995)

    MATH  Google Scholar 

  9. Lu S, Yang D. The decomposition of the weighted Herz spaces and its applications. Sci China Ser A-Math, 38: 147–158 (1995)

    MATH  Google Scholar 

  10. Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math, 103: 611–635 (1976)

    Article  Google Scholar 

  11. Komori Y. Notes on commutators of Hardy operators. Intern J Pure Appl Math, 7: 329–334 (2003)

    MATH  Google Scholar 

  12. Komori Y. Notes on commutators on Herz-type spaces. Arch Math, 81: 318–326 (2003)

    Article  MATH  Google Scholar 

  13. Lu S, Yang D. The local version of H p n spaces at the origin. Studia Math, 116: 103–131 (1995)

    MATH  Google Scholar 

  14. García-Cuerva J. Hardy spaces and Beurling algebras. J London Math Soc, 39: 499–513 (1989)

    Article  MATH  Google Scholar 

  15. Chen Z, Lau K. Some new classes of Hardy spaces. J Funct Anal, 123: 1687–1693 (1995)

    Google Scholar 

  16. Hernández E, Yang D. Interpolation of Herz-type Hardy spaces. Illinois J Math, 42: 564–581 (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-zhen Lu.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 10571014, 10371080) and the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No. 20040027001)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, Zw., Liu, Zg., Lu, Sz. et al. Characterization for commutators of n-dimensional fractional Hardy operators. SCI CHINA SER A 50, 1418–1426 (2007). https://doi.org/10.1007/s11425-007-0094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-0094-4

Keywords

  • n-dimensional fractional Hardy operator
  • commutator
  • CṀO function
  • homogeneous Herz space

MSC(2000)

  • 42B20
  • 42B35