Skip to main content
Log in

Hodge decomposition theorem on strongly Kähler Finsler manifolds

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Faran posed an open problem about analysis on complex Finsler spaces: Is there an analogue of the \(\bar \partial \)-Laplacian? Is there an analogue of Hodge theory? Under the assumption that (M, F) is a compact strongly Kähler Finsler manifold, we define a \(\bar \partial \)-Laplacian on the base manifold. Our result shows that the well-known Hodge decomposition theorem in Kähler manifolds is still true in the more general compact strongly Kähler Finsler manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths P, Harris J. Principles of algebraic geometry. New-York: Wiley, 1978

    MATH  Google Scholar 

  2. Kobayashi S. Differential geometry of complex vector bundles. Iwanami: Princeton Univ Press, 1987

    MATH  Google Scholar 

  3. Morrow J, Kodaira K. Complex manifolds. New York: Holt, Rinehart and Winston Inc, 1971

    MATH  Google Scholar 

  4. Wells R O. Differential analysis on complex manifolds. 2nd ed, Berlin: Springer-Verlag, 1980

    MATH  Google Scholar 

  5. Wu H. The Bochner technique in differential geometry. Advance in Mathematics (in Chinese), 1981, 10(1): 57–76

    Google Scholar 

  6. Antonelli P L, Zastawniak T J. Diffusion, Laplacian and Hodge decomposition on Finsler spaces. In: The theory of Finslerian Laplacians and applications. MAIA 459. Dordrect: Kluwer Academic Publishers, 1998: 141–149

    Google Scholar 

  7. Bao D, Lackey B. A Hodge decomposition theorem for Finsler spaces. C R Acad Sci Paris Série 1, 1996, t. 323: 51–56

    MathSciNet  MATH  Google Scholar 

  8. Bao D, Lackey B. A geometric inequality and a Weitzenböck formula for Finsler surfaces. In: The theory of Finslerian Laplacians and applications. MAIA 459. Dordrecht: Kluwer Academic Publishers, 1998: 245–275

    Google Scholar 

  9. Bertrand C, Rauzy A. Values propers d’opérateurs différentiels du second ordre sur une variété de Finsler. Bull Sci Math, 1998, 122: 399–408

    Article  MathSciNet  MATH  Google Scholar 

  10. Centore P. A mean-value Laplacian for Finsler spaces. In: The theory of Finslerian Laplacians and applications. MAIA 459. Dordrecht: Kluwer Academic Publishers, 1998: 151–186

    Google Scholar 

  11. Lackey B. A Bochner vanishing theorem for elliptic complices. In: The theory of Finslerian Laplacians and Applications. MAIA 459. Dordrecht: Kluwer Academic Publishers, 1998, 199–226

    Google Scholar 

  12. Munteanu G. Weitzenböck formulas for horizontal and vertical Laplacians. Houston Journal of Mathematics, 2003, 29(4): 889–900

    MathSciNet  MATH  Google Scholar 

  13. Shen Z M. The non-linear Laplacian for Finsler manifolds. In: The theory of Finslerian Laplacians and applications. MAIA 459. Dordrecht: Kluwer Academic Publishers, 1998: 187–198

    Google Scholar 

  14. Abate M, Patrizio G. Finsler metrics—A global approach with applications to geometric function theory. Lecture Notes in Mathematics, Vol. 1591, Berlin: Springer-Verlag, 1994

    MATH  Google Scholar 

  15. Aikou T. On complex Finsler manifolds. Rep Fac Sci Kagoshima Univ, 1991, 35: 9–25

    MathSciNet  Google Scholar 

  16. Aikou T. Finsler geometry on complex vector bundles. Riemann-Finlser geometry MSRI Publications, 2004, 50: 83–105

    MathSciNet  Google Scholar 

  17. Kobayashi S. Complex Finsler vector bundles. Cont Math, 1996, 196: 145–153

    Google Scholar 

  18. Kobayashi S. Negative vector bundles and complex Finsler structures. Nagoya Math J, 1975, 57: 153–166

    MathSciNet  MATH  Google Scholar 

  19. Rund H. Generalized metrics on complex manifolds. Math Nachr, 1967, 34: 55–77

    MathSciNet  MATH  Google Scholar 

  20. Rund H. The curvature theory of direction-dependent connections on complex manifolds. Tensor NS, 1972, 24: 189–205

    MathSciNet  MATH  Google Scholar 

  21. Faran J J. The equivalence problem for complex Finslet Hamiltonians. Cont Math, 1996, 196: 133–144

    MathSciNet  Google Scholar 

  22. Munteanu G. Complex spaces in Finsler, Lagrange and Hamilton geometries. Dordrecht: Kluwer Academic Publishers, 2004

    MATH  Google Scholar 

  23. Bland J, Kalka M. Variations of holomorphic curvature for Kähler Finsler metrics. Cont Math, 1996, 196: 121–132

    MathSciNet  Google Scholar 

  24. Zhong C P, Zhong T D. Horizontal \(\bar \partial \)-Laplacian on complex Finsler manifolds. Science in China Ser A Mathematics, 2005, 48(Supp): 377–391

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chunping.

Additional information

Dedicated to Professor Sheng GONG on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, C., Zhong, T. Hodge decomposition theorem on strongly Kähler Finsler manifolds. SCI CHINA SER A 49, 1696–1714 (2006). https://doi.org/10.1007/s11425-006-2055-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-006-2055-8

Keywords

MSC(2000)

Navigation