Skip to main content
Log in

Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove the uniform convergence of the standard multigrid V-cycle algorithm with the Gauss-Seidel relaxation performed only on the new nodes and their “immediate” neighbors for discrete elliptic problems on the adaptively refined finite element meshes using the newest vertex bisection algorithm. The proof depends on sharp estimates on the relationship of local mesh sizes and a new stability estimate for the space decomposition based on the Scott-Zhang interpolation operator. Extensive numerical results are reported, which confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I, Rheinboldt C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754

    Article  MathSciNet  MATH  Google Scholar 

  2. Morin P, Nochetto R H, Siebert K G. Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal, 2000, 38: 466–488

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen Z, Dai S. On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J Sci Comput, 2002, 24: 443–462

    Article  MATH  MathSciNet  Google Scholar 

  4. Mitchell W F. Optimal multilevel iterative methods for adaptive grids. SIAM J Sci Stat Comput, 1992, 13: 146–167

    Article  MATH  Google Scholar 

  5. Bank R E, Dupont T F, Yserentant H. The hierarchical basis multigrid method. Numer Math, 1988, 52: 427–458

    Article  MATH  MathSciNet  Google Scholar 

  6. Bänsch E. Local mesh refinement in 2 and 3 dimensions. Impact of Computing in Science and Engineering, 1991, 3: 181–191

    Article  MATH  MathSciNet  Google Scholar 

  7. Rivara M C. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. J Numer Meth Engrg, 1984, 20: 745–756

    Article  MATH  MathSciNet  Google Scholar 

  8. Stals L. Implementation of multigrid on parallel machines using adaptive finite element methods. Bjorstad P E, Espedal M S, Keyes D E, eds. In: Ninth International Conference on Domain Decomposition Methods. Bergen: DDM Org, 1997, 488–496

    Google Scholar 

  9. Chen Z, Dai S. Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal, 2001, 38: 1961–1985

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen Z, Jia F. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math Comp, 2004, 73: 1163–1197

    Google Scholar 

  11. Chen Z, Nochetto R H, Schmidt A. A characteristic Galerkin method with adaptive error control for continuous casting problem. Comput Methods Appl Mech Engrg, 2000, 189: 249–276

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Z, Wu H. An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J Numer Anal, 2003, 41: 799–826

    Article  MATH  MathSciNet  Google Scholar 

  13. Schmidt A, Siebert K G. ALBERT: An adaptive hierarchical finite element toolbox. IAM, University of Freiburg. 2000, http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert.

  14. Bramble J H, Ewing R E, Pasciak J E, et al. A preconditioneding technique for the efficient solution of problems with local grid refinement. Comput Methods Appl Mech Engrg, 1988, 67: 149–159

    Article  MATH  Google Scholar 

  15. McCormick S. Fast adaptive composite grid (FAC) methods. Böhmer K, Stetter H J, eds. In: Defect Correction Methods: Theory and Applications, Computing Supplementum 5. Wien: Sringer-Verlag, 1984, 115–121

    Google Scholar 

  16. McCormick S, Thomas J. The fast adaptive composite grid (FAC) method for elliptic equations. Math Comp, 1986, 46: 439–456

    Article  MATH  MathSciNet  Google Scholar 

  17. Widlund O B. Optimal iterative refinement methods. In: Chan T, Glowinski R, Périaux J, Widlund O, eds. Domain Decomposition Methods. Philadelphia: SIAM, 1989, 114–125

    Google Scholar 

  18. Bai D, Brandt A. Local mesh refinement multilevel techniques. SIAM J Sci Stat Comput, 1987, 8: 109–134

    Article  MATH  MathSciNet  Google Scholar 

  19. Bramble J H, Pasicak J E. New estimates for multigrid algorithms including the V-cycle. Math Comp, 1993, 60: 447–471

    Article  MATH  MathSciNet  Google Scholar 

  20. Bramble J H, Pasicak J E, Wang J, et al. Convergence estimates for product iterative methods with applications to domain decomposition. Math Comp, 1991, 57: 23–45

    Article  MATH  MathSciNet  Google Scholar 

  21. Oswald P. Multilevel Finite Element Approximation, Theory and Applications. Stuttgart: Teubner Verlag, 1994

    MATH  Google Scholar 

  22. Xu J. An introduction to multigrid convergence theory. In: Chan R, Chan T, Golub G, eds. Iterative Methods in Scientific Computing. Singapore: Springer-Verlag, 1997

    Google Scholar 

  23. Ainsworth M, Mclean W. Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer Math, 2003, 93: 387–413

    Article  MATH  MathSciNet  Google Scholar 

  24. Aksoylu B, Holst M. An odyssey into local refinement and multilevel preconditioning I: Optimality of the BPX preconditioned, Institute for Computational Engineering and Sciences, The University of Texas at Austin, ICES Technical Report 05-03, 2005

  25. Dahmen W, Kunoth A. Multilevel preconditioning. Numer Math, 1992, 63: 315–344

    Article  MATH  MathSciNet  Google Scholar 

  26. Oswald P. Multilevel solvers for elliptic problems on domains. In: Dahmen W, Kurdila A J, Oswald P, eds. Multiscale Wavelet Methods for PDEs. New York: Academic Press, 1996, 3–58

    Google Scholar 

  27. Bank R E, Dupont T. An optimal order process for solving elliptic finite element equations. Math Comp, 1981, 36: 35–51

    Article  MATH  MathSciNet  Google Scholar 

  28. Bastian P, Wittum G. On robust and adaptive multigrid methods. In: Hemker P W, Wesseling P, eds. Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference, Amsterdam, July 6–9, 1993. Basel: Birkhäuser, 1994, 1–17

    Google Scholar 

  29. Bornemann F A, Yserentant H. A basic norm equivalence for the theory of multilevel methods. Numer Math, 1993, 64: 455–476

    Article  MATH  MathSciNet  Google Scholar 

  30. Brandt A. Multilevel adaptive finite element methods I: Variational problems. In: Frehes J, Pallaschke D, Trotenberg U, eds. Special Topics of Applied Mathematics. Amsterdam: North-Holland, 1979, 91–128

    Google Scholar 

  31. Griebel M, Oswald P. On the abstract theory of additive and multiplicative Schwarz algorithms. Numer Math, 1995, 70: 163–180

    Article  MATH  MathSciNet  Google Scholar 

  32. Rüde U. Mathematical and Computational Techniques for Multilevel Adaptive Method, Frontiers in Applied Mathematics 13. Philadelphia: SIAM, 1993

    Google Scholar 

  33. Yserentant H. Old and new convergence proofs for multigrid methods. Acta Numerica, 1993, 3: 285–326

    Article  MATH  MathSciNet  Google Scholar 

  34. Xu J. Iterative methods by space decomposition and subspace correction. SIAM Review, 1992, 34: 581–613

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu J, Zikatanov L. The method of alternating projections and the method of subspace corrections in Hilbert space. J Amer Math Soc, 2002, 15: 573–597

    Article  MATH  MathSciNet  Google Scholar 

  36. Bramble J H. Multigrid Methods, Pitman Research Notes in Mathematical Sciences 294. Essex: Longman, 1993

    Google Scholar 

  37. Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu J. Multigrid convergence theory, Lecture Notes of the 2001 summer program on Multigrid Methods and Computational Electromagnetics in the Morningside Center of Mathematics. Chinese Academy of Sciences, Beijing, China

  39. Wu H. Uniform Convergence of a multigrid V-cycle for adaptive linear finite element methods, Postdoctoral Report. Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing, 2002

    Google Scholar 

  40. Brandt A. Multigrid Techniques: 1984 Guide, with applications to fluid dynamics, monograph. Weizmann Institute of Science, Rehovot, Israel, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Haijun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Chen, Z. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. SCI CHINA SER A 49, 1405–1429 (2006). https://doi.org/10.1007/s11425-006-2005-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-006-2005-5

Keywords

Navigation