Skip to main content
Log in

Adaptive Third-Order Fixed Time Sliding Mode Control with Chattering Free for Mobile Loading Arm Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The mobile loading arm (MLA) system is one of the most important mechanical equipments in the petrochemical industry consisting of rigid pipelines and rotating elbows. This paper researches the problems of dynamical modelling and tracking control. At first, an MLA dynamic model is built by using Euler-Lagrange function. And then, an adaptive third-order fixed time sliding mode (FDTSM) tracking controller with chattering free is represented, which enables the MLA system to dock with the vehicle tank mouth. In this paper, a new double-layer third-order fixed time sliding mode controller is first proposed to address the tracking problem in model-based MLA systems with known parameters. Moreover, considering the presence of modeling uncertainty and external disturbances, a nerual network adaptive FDTSM controller is designed to ensure that the close-loop system state tracking error converges to a bounded region around zero within a fixed time. Further, the stability of the close-loop system is proven by using the Lyapunov stability theorem. Simulation results illustrate the validaty of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B G and Li S R, Saturated nonsingular fast sliding mode control for the crane-form pipeline system, Entropy, 2022, 24(6): 1800, DOI: https://doi.org/10.3390/e24121800.

    Article  MathSciNet  Google Scholar 

  2. Xiao B and Yin S, Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics, IEEE Transactions on Industrial Informatics, 2019, 15(2): 689–698.

    Article  MathSciNet  Google Scholar 

  3. Li Z, Zhang Y, and Zhang R, Prescribed error performance control for second-order fully actuated systems, Journal of Systems Science & Complexity, 2022, 35(2): 660–669.

    Article  MathSciNet  Google Scholar 

  4. Zhang Z Q, Xie X J, and Ge S S, Adaptive tracking for uncertain MIMO nonlinear systems with time-varying parameters and bounded disturbance, IEEE Transactions on Systems Man Cybernetics-Systems, 2021, 51(7): 4479–4491.

    Article  Google Scholar 

  5. Zhao K, Song Y D, Chen C L P, et al., Adaptive asymptotic tracking with global performance for nonlinear systems with unknown control directions, IEEE Transactions on Automatic Control, 2022, 67(3): 1566–1573.

    Article  MathSciNet  Google Scholar 

  6. Sun H, Huang L, and He L, Research on the trajectory tracking control of a 6-DOF manipulator based on fully-actuated system models, Journal of Systems Science & Complexity, 2022, 35(2): 641–659.

    Article  MathSciNet  Google Scholar 

  7. Gao Y F, Sun X M, Wen C Y, et al., Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation, IEEE Transactions on Automatic Control, 2017, 62(5): 2498–2504.

    Article  MathSciNet  Google Scholar 

  8. Zhang L X, Sun R Y, and Gao X S, High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining, Science China-Technological Sciences, 2011, 54): 1481–1495.

    Article  Google Scholar 

  9. Shahnazi R, Cooperative neuro adaptive control of leader following uncertain multi-agent systems with unknown hysteresis and dead-zone, Journal of Systems Science & Complexity, 2020, 33(2): 312–332.

    Article  MathSciNet  Google Scholar 

  10. Li B, Yan L, and Gao X S, Robust adaptive control based on variable boundary for a twin-motor cable-driven system, IEEE Transactions on Industrial Electronics, 2022, 69(7): 7054–7063.

    Article  Google Scholar 

  11. Utkin V, Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, 1977, 22(2): 212–222.

    Article  MathSciNet  Google Scholar 

  12. Man Z H, Paplinski A P, and Wu H R, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Transactions on Automatic Control, 1994, 39(12): 2464–2469.

    Article  MathSciNet  Google Scholar 

  13. Sun L H, Wang W H, Yi R, et al., A novel guidance law using fast terminal sliding mode control with impact angle constraints, ISA Transactions, 2016, 64): 12–23.

    Article  Google Scholar 

  14. Chen Q, Yu L, and Nan Y, Finite-time tracking control for motor servo systems with unknown dead-zones, Journal of Systems Science & Complexity, 2013, 26(6): 940–956.

    Article  MathSciNet  Google Scholar 

  15. Lv X D, Zhang G M, Zhu M X, et al., Adaptive neural network global nonsingular fast terminal sliding mode control for a real time ground simulation of aerodynamic heating produced by hypersonic vehicles, Energies, 2022, 15(9): 3284, DOI: https://doi.org/10.3390/en15093284.

    Article  Google Scholar 

  16. Li J, Du H B, Cheng Y Y, et al., Position tracking control for permanent magnet linear motor via fast nonsingular terminal sliding mode control, Nonlinear Dynamics, 2019, 97(4): 2595–2605.

    Article  Google Scholar 

  17. Labbadi M and Cherkaoui M, Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances, ISA Transactions, 2020, 99): 290–304.

    Article  Google Scholar 

  18. Polyakov A, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 2012, 57(8): 2106–2116.

    Article  MathSciNet  Google Scholar 

  19. Zuo Z Y, Han Q L, and Ning B D, Fixed-Time Cooperative Control of Multi-Agent Systems, Springer Cham, Switzerland, 2001.

    Google Scholar 

  20. Zuo Z Y, Non-singular fixed-time terminal sliding mode control of non-linear systems, IET Control Theory and Appliecations, 2015, 9(4): 545–552.

    Article  MathSciNet  Google Scholar 

  21. Moulay E, Lechappe V, Bernuau E, et al., Robust fixed-time stability: Application to sliding-mode control, IEEE Transactions on Automatic Control, 2022, 67(2): 1061–1066.

    Article  MathSciNet  Google Scholar 

  22. Moulay E, Lechappe V, Bernuau E, et al., Fixed-time sliding mode control with mismatched disturbances, Automatica, 2022, 136): 110009.

    Article  MathSciNet  Google Scholar 

  23. Xu Q S, Adaptive integral terminal third-order finite-time sliding-mode strategy for robust nanopositioning control, IEEE Transactions on Industrial Electronics, 2021, 68(7): 6161–6170.

    Article  Google Scholar 

  24. Mondal S and Mahanta C, Adaptive second order terminal sliding mode controller for robotic manipulators, Journal of Franklin Institute-Engineering and Applied Mathematics, 2014, 351(4): 2356–2377.

    Article  MathSciNet  Google Scholar 

  25. Lee J Y, Chang P H, and Jin M L, Adaptive integral sliding mode control with time-delay estimation for robot manipulators, IEEE Transactions on Industrial Electronics, 2017, 64(8): 6796–6804.

    Article  Google Scholar 

  26. Huang Y J, Kuo T C, and Chang S H, Adaptive sliding-mode control for nonlinear systems with uncertain parameters, IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2017, 64(8): 6796–6804.

    Google Scholar 

  27. Yang C G, Jiang Y M, He W, et al., Adaptive parameter estimation and control design for robot manipulators with finite-time convergence, IEEE Transactions on Industrial Electronics, 2018, 65(10): 8112–8123.

    Article  Google Scholar 

  28. Chen Z, Huang F H, and Sun W C, RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay, IEEE-ASME Transactions on Mechatronics, 2020, 25(2): 906–918.

    Article  Google Scholar 

  29. Wang H Q, Chen B, and Lin C, Adaptive neural tracking control for a class of stochastic nonlinear systems, International Journal of Robust and Nonlinear Control, 2014, 24(7): 1262–1280.

    Article  MathSciNet  Google Scholar 

  30. Zuo Z Y, Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 2015, 54): 305–309.

    Article  MathSciNet  Google Scholar 

  31. Chen Q, Xie S Z, and He X X, Neural-network-based adaptive singularity-free fixed-time attitude tracking control for spacecrafts, IEEE Transactions on Cybernetics, 2021, 51(10): 5032–5045.

    Article  Google Scholar 

  32. Li Z J, Ge S Z S, and Ming A G, Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2007, 37(3): 607–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shurong Li.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the Beijing University of Posts and Telecommunications (BUPT) Excellent Ph.D. Students Foundation under Grant No. CX2020116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, S. & Liu, Z. Adaptive Third-Order Fixed Time Sliding Mode Control with Chattering Free for Mobile Loading Arm Systems. J Syst Sci Complex (2024). https://doi.org/10.1007/s11424-024-3528-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11424-024-3528-y

Keywords

Navigation