Skip to main content
Log in

A Singular Linear Quadratic Time-Inconsistent Optimal Control Problem

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Yong J [Acta Math. Appl. Sin. Engl. Ser. 28 (2012), 1–30] [Math. Control Relat. Fields 1 (2011), 83–118] studied a standard linear quadratic time-inconsistent optimal control problem via a cooperative and non-cooperative approach, respectively. The authors extend his results to a singular case. To handle the singularity, the authors prove the solvability of a generalized Riccati equation, and introduce a notion of \(\mathbb{M}\mathbb{P}\) of matrix. It is shown that the authors can obtain a family of parameter equilibrium controls in both cases. Another interesting outcome is that a new type of parameter forward-backward Volterra integral equations is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yong J, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 2011, 1: 83–118.

    Article  MathSciNet  MATH  Google Scholar 

  2. Yong J, Deterministic time-inconsistent optimal control problems — An essentially cooperative approach, Acta Math. Appl. Sin. Engl. Ser., 2012, 28: 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  3. Strotz R H, Myopia and inconsistency in dynamic utility maximization, Review of Economic Studies, 1955, 23: 165–180.

    Article  Google Scholar 

  4. Pollak R A, Consistent planning, The Review of Economic Studies, 1968, 35: 201–208.

    Article  Google Scholar 

  5. Goldman S M, Consistent plans, Review of Economic Studies, 1980, 47: 533–537.

    Article  MATH  Google Scholar 

  6. Björk T and Murgoci A, A general theory of Markovian time inconsistent stochastic control problems, https://ssrn.com/abstract=1694759, 2010.

  7. Hu Y, Jin H, and Zhou X Y, Time-inconsistent stochastic linear quadratic control, SIAM J. Control Optim., 2012, 50: 1548–1572.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu Y, Jin H, and Zhou X Y, Time-inconsistent stochastic linear-quadratic control: Characterization and uniqueness of equilibrium, SIAM J. Control Optim., 2017, 50: 1261–1279.

    Article  MathSciNet  MATH  Google Scholar 

  9. Wei Q, Yong J, and Yu Z, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 2017, 55: 4156–4201.

    Article  MathSciNet  MATH  Google Scholar 

  10. Yong J, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Relat. Fields, 2012, 2: 271–329.

    Article  MathSciNet  MATH  Google Scholar 

  11. Yong J, Linear-quadratic optimal control problems for mean-field stochastic differential equations — Time-consistent solutions, Trans. Amer. Math. Soc., 2017, 369: 5467–5523.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rami M A, Moore J B, and Zhou X Y, Indefinite stochastic linear quadratic control and generalized differential riccati equation, SIAM J. Control Optim., 2001, 40: 1296–1311.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen S, Li X, and Zhou X Y, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim., 1998, 36: 1685–1702.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen S, Li X, and Zhou X Y, Stochastic linear quadratic regulators with indefinite control weight costs. II, SIAM J. Control Optim., 2000, 39: 1065–1081.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang H and Xu J, Optimal control with irregular performance, Sci. China Inf. Sci., 2019, 62: 192203.1–192203.14.

    Article  MathSciNet  Google Scholar 

  16. Stewart G W, On the continuity of the generalized inverse, SIAM J. Appl. Math., 1969, 17: 33–45.

    Article  MathSciNet  MATH  Google Scholar 

  17. Walter W, Ordinary Differential Equations, Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  18. Yong J and Zhou X Y, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Ma.

Additional information

This research was supported by the Natural Science Foundation of China under Grant No. 11971334.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B. A Singular Linear Quadratic Time-Inconsistent Optimal Control Problem. J Syst Sci Complex 36, 1024–1052 (2023). https://doi.org/10.1007/s11424-023-1173-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1173-5

Keywords

Navigation