Skip to main content
Log in

Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the problem of stability analysis for a class of incommensurate nabla fractional order systems. In particular, both Caputo definition and Riemann-Liouville definition are under consideration. With the convex assumption, several elementary fractional difference inequalities on Lyapunov functions are developed. According to the essential features of nabla fractional calculus, the sufficient conditions are given first to guarantee the asymptotic stability for the incommensurate system by using the direct Lyapunov method. To substantiate the efficacy and effectiveness of the theoretical results, four examples are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun H G, Yong Z, Baleanu D, et al., A new collection of real world applications of fractional calculus in science and engineering, Communications in Nonlinear Science and Numerical Simulation, 2018, 64: 213–231.

    Article  MATH  Google Scholar 

  2. Chen J J, Chen B S, and Zeng Z G, Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(12): 2519–2535.

    Article  Google Scholar 

  3. Dinh C H, Mai V T, and Duong T H, New results on stability and stabilization of delayed Caputo fractional order systems with convex polytopic uncertainties, Journal of Systems Science & Complexity, 2020, 33(3): 563–583.

    Article  MathSciNet  MATH  Google Scholar 

  4. Tavazoei M and Asemani M H, On robust stability of incommensurate fractional-order systems, Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105344.

    Article  MathSciNet  MATH  Google Scholar 

  5. Wei Y H, Lyapunov stability theory for nonlinear nabla fractional order systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(10): 3246–3250.

    Google Scholar 

  6. Thuan M V, Thu NTH, Sau N H, et al., New results on H-infinity control for nonlinear conformable fractional order systems, Journal of Systems Science & Complexity, 2021, 34(1): 140–156.

    Article  MathSciNet  MATH  Google Scholar 

  7. Li Y, Chen Y Q, and Podlubny I, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 2009, 45(8): 1965–1969.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wyrwas M, Mozyrska D, and Girejko E, Stability of discrete fractional-order nonlinear systems with the nabla Caputo difference, IFAC Proceedings Volumes, 2013, 46(1): 167–171.

    Article  MATH  Google Scholar 

  9. Trigeassou J C, Maamri N, Sabatier J, et al., A Lyapunov approach to the stability of fractional differential equations, Signal Processing, 2011, 91(3): 437–445.

    Article  MATH  Google Scholar 

  10. Wei Y H, Chen Y Q, Wang J C, et al., Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems, Communications in Nonlinear Science and Numerical Simulation, 2019, 72: 472–492.

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang S and Liang Y, Inverse Lyapunov theorem for linear time invariant fractional order systems, Journal of Systems Science and Complexity, 2019, 32(6): 1544–1559.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallegos J A and Duarte-Mermoud M A, Converse theorems in Lyapunov’s second method and applications for fractional order systems, Turkish Journal of Mathematics, 2019, 43: 1626–1639.

    Article  MathSciNet  MATH  Google Scholar 

  13. Franco-Perez L, Fernandez-Anaya G, and Quezada-Tellez L A, On stability of nonlinear nonau-tonomous discrete fractional Caputo systems, Journal of Mathematical Analysis and Applications, 2020, 487(2): 124021.

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Y, Chen Y Q, and Podlubny I, Stability of fractional-order nonlinear dynamic systems: Lya-punov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications, 2010, 59(5): 1810–1821.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wyrwas M and Mozyrska D, On Mittag-Leffler stability of fractional order difference systems, In: Advances in Modelling and Control of Non-Integer-Order Systems, Springer, 2015, 209–220.

  16. Baleanu D, Wu G C, Bai Y R, et al., Stability analysis of Caputo-like discrete fractional systems, Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 520–530.

    Article  MathSciNet  MATH  Google Scholar 

  17. Eloe P and Jonnalagadda J, Mittag-Leffler stability of systems of fractional nabla difference equations, Bulletin of the Korean Mathematical Society, 2019, 56(4): 977–992.

    MathSciNet  MATH  Google Scholar 

  18. Mai V T and Dinh C H, Robust finite-time stability and stabilization of a class of fractional-order switched nonlinear systems, Journal of Systems Science & Complexity, 2019, 32(6): 1479–1497.

    Article  MathSciNet  MATH  Google Scholar 

  19. Aguila-Camacho N, Duarte-Mermoud M A, and Gallegos J A, Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9): 2951–2957.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu G C, Baleanu D, and Luo W H, Lyapunov functions for Riemann-Liouville-like fractional difference equations, Applied Mathematics and Computation, 2017, 314: 228–236.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang S, Yu Y G, and Wang H, Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis Hybrid Systems, 2015, 16: 104–121.

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu S, Wu X, Zhou X F, et al., Asymptotical stability of Riemann-Liouville fractional nonlinear systems, Nonlinear Dynamics, 2016, 86(1): 65–71.

    Article  MathSciNet  MATH  Google Scholar 

  23. Alsaedi A, Ahmad B, and Kirane M, A survey of useful inequalities in fractional calculus, Fractional Calculus and Applied Analysis, 2017, 20(3): 574–594.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen W S, Dai H, Song Y F, et al., Convex Lyapunov functions for stability analysis of fractional order systems, IET Control Theory & Applications, 2017, 11(7): 1070–1074.

    Article  MathSciNet  Google Scholar 

  25. Badri V and Tavazoei M S, Stability analysis of fractional order time delay systems: Constructing new Lyapunov functions from those of integer order counterparts, IET Control Theory & Applications, 2019, 13(15): 2476–2481.

    Article  MathSciNet  Google Scholar 

  26. Wang X H, Wu H Q, and Cao J D, Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth, Nonlinear Analysis: Hybrid Systems, 2020, 37: 100888.

    MathSciNet  MATH  Google Scholar 

  27. Li X, Wu H Q, and Cao J D, Synchronization in finite time for variable-order fractional complex dynamic networks with multi-weights and discontinuous nodes based on sliding mode control strategy, Neural Networks, 2021, 139: 335–347.

    Article  Google Scholar 

  28. Dai H and Chen W S, New power law inequalities for fractional derivative and stability analysis of fractional order systems, Nonlinear Dynamics, 2017, 87(3): 1531–1542.

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei Y H, Chen Y Q, Cheng S S, et al., A note on short memory principle of fractional calculus, Fractional Calculus and Applied Analysis, 2017, 20(6): 1382–1404.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu C and Liu X Z, Lyapunov and external stability of Caputo fractional order switching systems, Nonlinear Analysis Hybrid Systems, 2019, 34: 131–146.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei Y H, Chen Y Q, Liu T Y, et al., Lyapunov functions for nabla discrete fractional order systems, ISA Transactions, 2019, 88: 82–90.

    Article  Google Scholar 

  32. Liu X, Jia B G, Erbe L, et al., Stability analysis for a class of nabla (q, h)-fractional difference equations, Turkish Journal of Mathematics, 2019, 43: 664–687.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei Y D, Wei Y H, Chen Y Q, et al., Mittag-Leffler stability of nabla discrete fractional order dynamic systems, Nonlinear Dynamics, 2020, 101: 407–417.

    Article  Google Scholar 

  34. Wei Y H, Fractional difference inequalities with their implications to the stability analysis of nabla fractional order systems, Nonlinear Dynamics, 2021, 104: 3643–3654.

    Article  Google Scholar 

  35. Wei Y H, Time-varying Lyapunov functions for nonautonomous nabla fractional order systems, ISA Transactions, 2022, 126: 234–241.

    Article  Google Scholar 

  36. Chen Y Q, Wei Y H, Zhou X, et al., Stability for nonlinear fractional order systems: An indirect approach, Nonlinear Dynamics, 2017, 89(2): 1011–1018.

    Article  MATH  Google Scholar 

  37. Trigeassou J C and Maamri N, Analysis, Modeling and Stability of Fractional Order Differential Systems 2: The Infinite State Approach, ISTE Ltd, London, 2019.

    Book  MATH  Google Scholar 

  38. Sakthivel R, Ahn C K, and Maya J, Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Transactions on Systems Man and Cybernetics: Systems, 2019, 49(9): 1797–1805.

    Article  Google Scholar 

  39. Zhe Z and Jing Z, Asymptotic stabilization of general nonlinear fractionalorder systems with multiple time delays, Nonlinear Dynamics, 2020, 102(2): 605–619.

    Article  Google Scholar 

  40. Wei Y H and Chen Y Q, Converse Lyapunov theorem for nabla asymptotic stability without conservativeness, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2676–2687.

    Article  Google Scholar 

  41. Sheng D, Wei Y H, Cheng S S, et al., Adaptive backstepping control for fractional order systems with input saturation, Journal of the Franklin Institute, 2017, 354(5): 2245–2268.

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei Y H, Sheng D, Chen Y Q, et al., Fractional order chattering-free robust adaptive backstepping control technique, Nonlinear Dynamics, 2019, 95: 2383–2394.

    Article  MATH  Google Scholar 

  43. Hajipour A and Aminabadi S S, Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method, Optik, 2016, 127(19): 7704–7709.

    Article  Google Scholar 

  44. Gong P and Han Q L, Practical fixed-time bipartite consensus of nonlinear incommensurate fractional-order multiagent systems in directed signed networks, SIAM Journal on Control and Optimization, 2020, 58(6): 3322–3341.

    Article  MathSciNet  MATH  Google Scholar 

  45. Badri V and Tavazoei M S, Non-uniform reducing the involved differentiators’ orders and Lyapunov stability preservation problem in dynamic systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 735–739.

    Google Scholar 

  46. Wu C, Comments on “Stability analysis of Caputo fractional-order nonlinear systems revisited”, Nonlinear Dynamics, 2021, 104: 551–555.

    Article  Google Scholar 

  47. Naifar O, Makhlouf A B, and Hammami M A, Comments on “Mittag-Leffler stability of fractional order nonlinear dynamic systems [Automatica 45(8) (2009) 1965–1969]”, Automatica, 2017, 75: 329.

    Article  MathSciNet  MATH  Google Scholar 

  48. Khalil H K and Grizzle J W, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002.

    Google Scholar 

  49. Wei Y H, Wang J C, Tse P W, et al., Modelling and simulation of nabla fractional dynamic systems with nonzero initial conditions, Asian Journal of Control, 2021, 23: 525–535.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiheng Wei, Xuan Zhao, Yingdong Wei or Yangquan Chen.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 62273092, the Science Climbing Project under Grant No. 4307012166, the Anhui Provincial Natural Science Foundation under Grant No. 1708085QF141, the Fundamental Research Funds for the Central Universities under Grant No. WK2100100028, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2016M602032 and the fund of China Scholarship Council under Grant No. 201806345002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhao, X., Wei, Y. et al. Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems. J Syst Sci Complex 36, 555–576 (2023). https://doi.org/10.1007/s11424-023-1150-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1150-z

Keywords

Navigation