Skip to main content
Log in

Boundary Control of Coupled Non-Constant Parameter Systems of Time Fractional PDEs with Different-Type Boundary Conditions

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper addresses a boundary state feedback control problem for a coupled system of time fractional partial differential equations (PDEs) with non-constant (space-dependent) coefficients and different-type boundary conditions (BCs). The BCs could be heterogeneous-type or mixed-type. Specifically, this coupled system has different BCs at the uncontrolled side for heterogeneous-type and the same BCs at the uncontrolled side for mixed-type. The main contribution is to extend PDE backstepping to the boundary control problem of time fractional PDEs with space-dependent parameters and different-type BCs. With the backstepping transformation and the fractional Lyapunov method, the Mittag-Leffler stability of the closed-loop system is obtained. A numerical scheme is proposed to simulate the fractional case when kernel equations have not an explicit solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Podlubny I, Fractional Differential Equations, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  2. Chen J, Zhuang B, Chen Y Q, et al., Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions, IET Control Theory & Applications, 2017, 11(17): 2964–2976.

    Article  MathSciNet  Google Scholar 

  3. Laskin K, Fractional schrödinger equation, Physical Review E, 2002, 66(5): 056108.

    Article  MathSciNet  Google Scholar 

  4. Pagnini G, Nonlinear time-fractional differential equations in combustion science, Fractional Calculus and Applied Analysis, 2011, 14(1): 80–93.

    Article  MathSciNet  MATH  Google Scholar 

  5. Murio D A, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Computers & Mathematics with Applications, 2007, 53(10): 1492–1501.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun H G, Chen W, Li C P, et al., Fractional differential models for anomalous diffusion, Physica A: Statistical Mechanics and Its Applications, 2010, 389(14): 2719–2724.

    Article  Google Scholar 

  7. Laskin N, Fractional quantum mechanics, Physical Review E, 2000, 62(3): 3135.

    Article  MathSciNet  MATH  Google Scholar 

  8. Krstic M and Smyshlyaev A, Boundary Control of PDEs: A Course on Backstepping Designs, Siam, Philadelphia, 2008.

    Book  MATH  Google Scholar 

  9. Matignon D, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, 1996, 2: 963–968.

    Google Scholar 

  10. Ge F D, Chen Y Q, and Kou C H, Boundary feedback stabilisation for the time fractional-order anomalous diffusion system, IET Control Theory & Applications, 2016, 10(11): 1250–1257.

    Article  MathSciNet  Google Scholar 

  11. Zhou H C and Guo B Z, Boundary feedback stabilization for an unstable time fractional reaction diffusion equation, SIAM Journal on Control and Optimization, 2018, 56(1): 75–101.

    Article  MathSciNet  MATH  Google Scholar 

  12. Mai V T and Dinh C H, Robust finite-time stability and stabilization of a class of fractional-order switched nonlinear systems, Journal of Systems Science and Complexity, 2019, 32(6): 1479–1497.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh C H and Mai V T, New Results on stability and stabilization of delayed Caputo fractional order systems with convex polytopic uncertainties, Journal of Systems Science and Complexity, 2020, 33(3): 563–583.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gafiychuk V, Datsko B, Meleshko V, et al., Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos, Solitons & Fractals, 2009, 41(3): 1095–1104.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li Y, Chen Y Q, and Podlubny I, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications, 2010, 59(5): 1810–1821.

    Article  MathSciNet  MATH  Google Scholar 

  16. Li H L, Jiang Y L, Wang Z L, et al., Global mittag-leffler stability of coupled system of fractional-order differential equations on network, Applied Mathematics and Computation, 2015, 270: 269–277.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge F D, Meurer T, and Chen Y Q, Mittag-leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters, Systems & Control Letters, 2018, 122: 86–92.

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen J, Tepljakov A, Petlenkov E, et al., Boundary state and output feedbacks for underactuated systems of coupled time-fractional pdes with different space-dependent diffusivity, International Journal of Systems Science, 2020, 51(15): 2922–2942.

    Article  MathSciNet  MATH  Google Scholar 

  19. Deutscher J and Kerschbaum S, Backstepping control of coupled linear parabolic PIDEs with spatially-varying coefficients, IEEE Transactions on Automatic Control, 2018, 63(12): 4218–4233.

    Article  MathSciNet  MATH  Google Scholar 

  20. Orlov Y, Pisano A, Pilloni A, et al., Output feedback stabilization of coupled reaction-diffusion processes with constant parameters, SIAM Journal on Control and Optimization, 2017, 55: 4112–4155.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu Q W and Xu Y F, Extremely low order time-fractional differential equation and application in combustion process, Communications in Nonlinear Science and Numerical Simulation, 2018, 64: 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li J and Liu Y G, Stabilization of coupled PDE-ODE systems with spatially varying coefficient, Journal of Systems Science and Complexity, 2013, 26(2): 151–174.

    Article  MathSciNet  MATH  Google Scholar 

  23. Henry B I and Wearne S L, Fractional reaction-diffusion, Physica A: Statistical Mechanics and Its Applications, 2000, 276(3-4): 448–455.

    Article  MathSciNet  Google Scholar 

  24. Uchaikin V V and Sibatov R T, Fractional theory for transport in disordered semiconductors, Communications in Nonlinear Science and Numerical Simulation, 2008, 13(4): 715–727.

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen J, Cui B T, and Chen Y Q, Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient, ISA Transactions, 2018, 80: 203–211.

    Article  Google Scholar 

  26. Zhou Y J, Chen J, and Cui B T, Observer design for boundary coupled fractional order distributed parameter systems, International Conference on Control, Mechatronics and Automation (ICCMA 2019), Delft, 2019: 384–388.

    Chapter  Google Scholar 

  27. Kilbas A A A, Srivastava H M, and Trujillo J J, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006.

    MATH  Google Scholar 

  28. Bazhlekova E, The abstract cauchy problem for the fractional evolution equation, Fractional Calculus and Applied Analysis, 1998, 1(3): 255–270.

    MathSciNet  MATH  Google Scholar 

  29. Friedman A, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964.

    MATH  Google Scholar 

  30. Curtain R F and Zwart H, An Introduction To Infinite-Dimensional Linear Systems Theory, Springer-Verlag, Berlin, 1995.

    Book  MATH  Google Scholar 

  31. Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, et al., Using general quadratic lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science & Numerical Simulation, 2015, 22(1–3): 650–659.

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller K S and Samko S G, Completely monotonic functions, Integral Transforms & Special Functions, 2001, 12(4): 389–402.

    Article  MathSciNet  MATH  Google Scholar 

  33. Baccoli A, Pisano A, and Orlov Y, Boundary control of coupled reaction-diffusion processes with constant parameters, Automatica, 2015, 54: 80–90.

    Article  MathSciNet  MATH  Google Scholar 

  34. Li C, Wang J C, Lu J G, et al., Observer-based stabilisation of a class of fractional order non-linear systems for 0 < α < 2 case, IET Control Theory & Applications, 2014, 8(13): 1238–1246.

    Article  MathSciNet  Google Scholar 

  35. Saad K M and Gómez-Aguilar J F, Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense, Revista Mexicana de Física, 2018, 64(5): 539–547.

    MathSciNet  Google Scholar 

  36. Rasheed A and Anwar M S, Simulations of variable concentration aspects in a fractional nonlinear viscoelastic fluid flow, Communications in Nonlinear Science and Numerical Simulation, 2018, 65: 216–230.

    Article  MathSciNet  MATH  Google Scholar 

  37. Luchko Y, Mainardi F, and Povstenko Y, Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation, Computers & Mathematics with Applications, 2013, 66(5): 774–784.

    Article  MathSciNet  MATH  Google Scholar 

  38. Li H F, Cao J X, and Li C P, High-order approximation to Caputo derivatives and Caputotype advection-diffusion equations (III), Journal of Computational & Applied Mathematics, 2016, 299(3): 159–175.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ablowitz M J, Kruskal M D, and Ladik J, Solitary wave collisions, SIAM Journal on Applied Mathematics, 1979, 36(3): 428–437.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang K and Fridman E, Boundary control of delayed ODE.heat cascade under actuator saturation, Automatica, 2017, 83: 252–261.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhuang.

Additional information

This research was supported by National Natural Science Foundation of China under Grant No. 62203070, Science and Technology Project of Changzhou University under Grant Nos. ZMF20020460, KYP2102196C, and KYP2202225C, Changzhou Science and Technology Agency under Grant No. CE20205048, the PhD Scientific Research Foundation of Binzhou University under Grant No. 2020Y04.

This paper was recommended for publication by Editor ZHAO Yanlong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhuang, B. Boundary Control of Coupled Non-Constant Parameter Systems of Time Fractional PDEs with Different-Type Boundary Conditions. J Syst Sci Complex 36, 273–293 (2023). https://doi.org/10.1007/s11424-023-0204-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-0204-6

Keywords

Navigation