Skip to main content
Log in

Finite-Time Stability for Interval Type-2 Fuzzy Nonlinear Systems via an Observer-Based Sliding Mode Control

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This work focuses on the design of a sliding mode controller for a class of continuous-time interval type-2 fuzzy-model-based nonlinear systems with unmeasurable state information over a finite-time interval. Aiming at describing the nonlinearities containing parameter uncertainties that inevitably appear in practice, the interval type-2 fuzzy sets are employed to model the studied system. To improve the designing flexibility, a fuzzy observer model non-parallel distribution compensation scheme is designed to estimate the state information of the plant, i.e., the observer is allowed to have a mismatching premise structure from the system. On this basis, the appropriate fuzzy sliding surface and fuzzy controller are constructed by following the same premise variables as the designed fuzzy observer. Then, by means of the sliding mode control theory and the Lyapunov function method, some novel sufficient criteria are established to ensure the finite-time boundedness for the studied systems via a partitioning strategy including the reaching phase, the sliding motion phase and the whole time interval. Furthermore, the designed gains are acquired by solving the matrix convex optimization problem. Finally, the effectiveness of the developed method is demonstrated by two simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao L, Fei S, and Yu L, Exponential stability of linear distributed parameter switched systems with time-delay, Journal of Systems Science & Complexity, 2014, 27(2): 263–275.

    Article  MathSciNet  MATH  Google Scholar 

  2. Zong G D and Zhao H J, Input-to-state stability of switched nonlinear delay systems based on a novel Lyapunov-Krasovskii functional method, Journal of Systems Science & Complexity, 2018, 31(4): 875–888.

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang H, Liu G, Zhang H, et al., Neural-network-based event-triggered adaptive control of non-affine nonlinear multi-agent systems with dynamic uncertainties, IEEE Trans. Neural Netw. and Learn. Syst., 2021, 32(5): 2239–2250.

    Article  MathSciNet  Google Scholar 

  4. Shi K B, Tang Y Y, Liu X Z, et al., Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system, Opt. Control Appl. Methods, 2017, 38(6): 1208–1226.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi K B, Tang Y Y, Liu X Z, et al., Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation, ISA Transactions, 2017, 66: 185–199.

    Article  Google Scholar 

  6. Jiao S Y, Xia J W, Wang Z, et al., An improved result on stability analysis of delayed load frequency control power systems, Int. J. Control, Automation and Systems, 2021, 19: 1633–1639.

    Article  Google Scholar 

  7. Wang Y, Chen F, Zhuang G, et al., Dynamic event-based mixed H and dissipative asynchronous control for Markov jump singularly perturbed systems, Appl. Math. Comput., 2020, 386: 125443.

    MathSciNet  MATH  Google Scholar 

  8. Shen H, Ru T, Xia J, et al., Finite-time energy-to-peak quantized filtering for Markov jump networked systems under weighted try-once-discard protoco, Int. J. Robust & Nonlinear Control, 2021, 31(10): 4951–4964.

    Article  Google Scholar 

  9. Cheng P, He S P, Luan X L, et al., Finite-region asynchronous H control for 2D Markov jump systems, Automatica, 2021, 129: 109590.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ren C C, He S P, Luan X L, et al., Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T-S fuzzy model approach, IEEE Trans. Cybern., 2021, 51(1): 77–87.

    Article  Google Scholar 

  11. Li Y M, Li K W, and Tong S C, Adaptive neural network finite-time control for multi-input and multi-output nonlinear systems with the powers of odd rational numbers, IEEE Trans. Netw. Learn. Syst., 2020, 31(7): 2532–2543.

    MathSciNet  Google Scholar 

  12. Li H, Wang J, Lam H K, et al., Adaptive sliding mode control for interval type-2 fuzzy systems, IEEE Trans. Syst. Man Cybernet. Syst., 2016, 46(12): 1654–1663.

    Article  Google Scholar 

  13. Li H, Shi P, Yao D, et al., Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 2016, 64: 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang Y, Chen F, Lang J, et al., Sliding mode control of persistent dwell-time switched systems with random data dropouts, Appl. Math. Comput., 2021, 400: 126087.

    MathSciNet  MATH  Google Scholar 

  15. Wang J, Yang Y, Xia J W, et al., Coding-decoding-based sliding mode control for networked persistent dwell-time switched systems, Int. J. Robust & Nonlinear Control, 2021, 31(2): 6055–6068.

    Article  MathSciNet  Google Scholar 

  16. Song J, Niu Y, and Zou Y, Finite-time stabilization via sliding mode control, IEEE Trans. Automat. Control, 2017, 62(3): 1478–1483.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang J, Ru T, Xia J, et al., Asynchronous event-triggered sliding mode control for semi-Markov jump systems within a finite-time interval, IEEE Trans. Circuits Syst. I, 2021, 68(1): 458–468.

    Article  MathSciNet  Google Scholar 

  18. Qi W, Zong G, and Karimi H R, Finite-time observer-based sliding mode control for quantized semi-Markov switching systems with application, IEEE Trans. Industrial Informat., 2020, 16(2): 1259–1271.

    Article  Google Scholar 

  19. Nie R, He S P, Liu F, et al., Sliding mode controller design for conic-type nonlinear semi-Markovian jumping systems of time-delayed Chua’s circuit, IEEE Trans. Syst. Man Cybernet. Syst., 2021, 51(4): 2467–2475.

    Article  Google Scholar 

  20. Li X H, Lu D K, Zhang W, et al., Sensor fault estimation and fault-tolerant control for a class of Takagi-Sugeno M arkovian jump systems with partially unknown transition rates based on the reduced-order observer, Journal of Systems Science & Complexity, 2018, 31(6): 1405–1422.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie X P, Zhou Q, Yue D, et al., Relaxed control design of discrete-time Takagi—Sugeno fuzzy systems: An event-triggered real-time scheduling approach, IEEE Trans. Syst. Man Cybernet. Syst., 2018, 48(12): 2251–2262.

    Article  Google Scholar 

  22. Liang H J, Guo X Y, Pan Y N, et al., Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Trans. Fuzzy Syst., 2021, 29(6): 1601–1614.

    Article  Google Scholar 

  23. Zhao T and Dian S Y, Fuzzy static output feedback H control for nonlinear systems subject to parameter uncertainties, Journal of Systems Science & Complexity, 2018, 31(2): 343–371.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tong S C, Min X, and Li Y X, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybern., 2020, 50(9): 3903–3913.

    Article  Google Scholar 

  25. Xia J W, Lian Y X, Su S F, et al., Observer-based event-triggered adaptive fuzzy control for unmeasured stochastic nonlinear systems with unknown control directions, IEEE Trans. Cybern., 2021, DOI: https://doi.org/10.1109/TCYB.2021.3069853.

  26. Xia J W, Chen G L, Park J H, et al., Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems, IEEE Trans. Fuzzy Syst., 2021, 29(6): 1325–1339.

    Article  Google Scholar 

  27. Shi K, Wang J, Zhong S, et al., Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Sets Syst., 2020, 394: 40–64.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang J, Huang Z G, Wu Z G, et al., Extended dissipative control for singularly perturbed PDT switched systems and its application, IEEE Trans. Circuits Syst. I, Reg. Papers, 2020, 67(12): 5281–5289.

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang J, Yang C Y, Xia J W, et al., Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE Trans. Fuzzy Syst., 2021, DOI: https://doi.org/10.1109/TFUZZ.2021.3070125.

  30. Wang X L, Yu Y, Cai J, et al., Dynamic pinning synchronization of fuzzy-dependent-switched coupled memristive neural networks with mismatched dimensions on time scales, IEEE Trans. Fuzzy Syst., 2020, DOI: https://doi.org/10.1109/TFUZZ.2020.3048576.

  31. Wang J, Wang X L, Xie N, et al., Fuzzy-model-based H pinning synchronization for coupled neural networks subject to reaction-diffusion, IEEE Trans. Fuzzy Syst., 2020, DOI: https://doi.org/10.1109/TFUZZ.2020.3036697.

  32. Shi K B, Tang Y Y, Zhong S, et al., Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process, Int. J. Robust & Nonlinear Control, 2018, 28(5): 1693–1714.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang Y, Hu X H, Shi K B, et al., Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals, J. Franklin Inst., 2020, 357(15): 10921–10936.

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi K B, Wang J, Tang Y Y, et al., Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets and Sys., 2020, 381: 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang J, Zhang Y G, Su L, et al., Fuzzy-model-based l2-l filtering for discrete-time semi-Markov jump nonlinear systems using semi-Markov kernel, IEEE Trans. Fuzzy Syst., 2021, DOI: https://doi.org/10.1109/TFUZZ.2021.3078832.

  36. Wang J, Xia J W, Shen H, et al., Synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 2020, DOI: https://doi.org/10.1109/TFUZZ.2020.3012761.

  37. Shen H, Dai M, Luo Y, et al., Fault-tolerant fuzzy control for semi-Markov jump nonlinear systems subject to incomplete SMK and actuator failures, IEEE Trans. Fuzzy Syst., 2020, DOI: https://doi.org/10.1109/TFUZZ.2020.3011760.

  38. Xie W, Zeng Y, Shi K, et al., Hybrid event-triggered filtering for nonlinear Markov jump systems with stochastic cyber-attacks, IEEE Access, 2020, 381: 40–64.

    Google Scholar 

  39. Lam H K and Seneviratne L D, Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Trans. Syst. Man Cybernet. Part B, 2008, 38(3): 617–628.

    Article  Google Scholar 

  40. Li H, Yin S, Pan Y, et al., Model reduction for interval type-2 Takagi-Sugeno fuzzy systems, Automatica, 2015, 61: 308–314.

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu X, Xia J, Wang J, et al., Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application, Journal of Systems Science & Complexity, 2021, 34(6): 2195–2218.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kavikumar R, Sakthivel R, Kwon O, et al., Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults, J. Franklin Inst., 2019, 356(15): 8296–8324.

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang B, Karimi H R, Kao Y, et al., Takagi-Sugeno model-based sliding mode observer design for finite-time synthesis of semi-Markovian jump systems, IEEE Trans. Syst. Man Cybernet. Syst., 2019, 49(7): 1505–1515.

    Article  Google Scholar 

  44. Zhang Z, Niu Y, Karimi H R, Sliding mode control of interval type-2 fuzzy systems under roundrobin scheduling protocol, IEEE Trans. Syst. Man Cybernet. Syst., 2019, DOI: https://doi.org/10.1109/TSMC.2019.2956714.

  45. Zhang Z, Niu Y, and Song J, Input-to-state stabilization of interval type-2 fuzzy systems subject to cyberattacks: An observer-based adaptive sliding mode approach, IEEE Trans. Fuzzy Syst., 2020, 28(1): 190–203.

    Article  Google Scholar 

  46. Peng C, Ma S, and Xie X, Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication, IEEE Trans. Cybern., 2017, 47(8): 2279–2287.

    Article  Google Scholar 

  47. Xue M, Tang Y, Wu L, et al., Switching stabilization for type-2 fuzzy systems with network-induced packet losses, IEEE Trans. Cybern., 2019, 49(7): 2591–2604.

    Article  Google Scholar 

  48. Cao Z, Niu Y, and Song J, Finite-time sliding-mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks, IEEE Trans. Automat. Control, 2020, 65(3): 1264–1271.

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu Y, Guo B Z, Park J H, et al., Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Netw. and Learn. Syst., 2018, 29(1): 118–128.

    Article  MathSciNet  Google Scholar 

  50. Wang D, Chen F, Meng B, et al., Event-based secure H load frequency control for delayed power systems subject to deception attacks, Appl. Math. Comput., 2021, 394: 125788.

    MathSciNet  MATH  Google Scholar 

  51. Wang J, Liu X, Xia J, et al., Quantized interval type-2 fuzzy control for persistent dwell-time switched nonlinear systems with singular perturbations, IEEE Trans. Cybern., 2021, DOI: https://doi.org/10.1109/TCYB.2021.3049459.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Shen.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61873002, 62173001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xia, J., Wang, J. et al. Finite-Time Stability for Interval Type-2 Fuzzy Nonlinear Systems via an Observer-Based Sliding Mode Control. J Syst Sci Complex 35, 2223–2247 (2022). https://doi.org/10.1007/s11424-022-1106-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-1106-8

Keywords

Navigation