Skip to main content
Log in

Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable. A two-step approach to estimate the drift function of a jump-diffusion model in noisy settings is proposed. The proposed estimator is shown to be consistent and asymptotically normal in the presence of finite activity jumps. Simulated experiments and a real data application are undertaken to assess the finite sample performance of the newly proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johannes M, The statistical and economic role of jumps in continuous-time interest rate models, Journal of Finance, 2004, 59(1): 227–260.

    Article  Google Scholar 

  2. Aït-Sahalia Y and Jacod J, Testing for jumps in a discretely observed process, Annals of Statistics, 2009, 37(1): 184–222.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cont R and Tankov P, Financial Modelling with Jump Processes, Chapman & Hall/CRC Press, London, 2004.

    MATH  Google Scholar 

  4. Mancini C and Renò R, Threshold estimation of Markov models with jumps and interest rate modeling, Journal of Econometrics, 2011, 160(1): 77–192.

    Article  MathSciNet  MATH  Google Scholar 

  5. Protter P E, Stochastic Integration and Differential Equations, Springer-Heidelberg, Berlin, 2004.

    MATH  Google Scholar 

  6. Liu Q, Liu Y, Liu Z, et al., Estimation of spot volatility with superposed noisy data, The North American Journal of Economics and Finance, 2018, 44: 62–79.

    Article  Google Scholar 

  7. Lo A W and Wang J, Implementing option pricing models when asset returns are predictable, Journal of Finance, 1995, 50(1): 87–129.

    Article  Google Scholar 

  8. Miscia O D, Nonparametric estimation of diffusion process: A closer look, Working Paper, 2004.

  9. Arfi M, Nonparametric drift estimation from ergodic samples, Journal of Nonparametric Statistics, 1995, 5(4): 381–389.

    Article  MathSciNet  MATH  Google Scholar 

  10. Stanton R, A nonparametric model of term structure dynamics and the market price of interest rate risk, Journal of Finance, 1997, 52(5): 1973–2002.

    Article  Google Scholar 

  11. Bandi F M and Phillips P C, Fully nonparametric estimation of scalar diffusion models, Econometrica, 2003, 71(1): 241–283.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dalalyan A, Sharp adaptive estimation of the drift function for ergodic diffusions, Annals of Statistics, 2005, 33(6): 2507–2528.

    Article  MathSciNet  MATH  Google Scholar 

  13. Galtchouk L and Pergamenshchikov S, Nonparametric sequential minimax estimation of the drift coefficient in diffusion processes, Sequential Analysis, 2005, 24(3): 303–330.

    Article  MathSciNet  MATH  Google Scholar 

  14. Comte F, Genon-Catalot V, and Rozenholc Y, Penalized nonparametric mean square estimation of the coefficients of diffusion processes, Bernoulli, 2007, 13(2): 514–543.

    Article  MathSciNet  MATH  Google Scholar 

  15. Löcherbach E, Loukianova D, and Loukianov O, Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process, ESAIM: Probability and Statistics, 2011, 15: 197–216.

    Article  MathSciNet  MATH  Google Scholar 

  16. Van Der Meulen F, Schauer M, and Van Zanten H, Reversible jump MCMC for nonparametric drift estimation for diffusion processes, Computational Statistics & Data Analysis, 2014, 71: 615–632.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bandi F M and Nguyen T H, On the functional estimation of jump-diffusion models, Journal of Econometrics, 2003, 116(1): 293–328.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hanif M, Wang H, and Lin Z, Reweighted Nadaraya-Watson estimation of jump-diffusion models, Science China Mathematics, 2012, 55(5): 1005–1016.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hanif M, Local linear estimation of jump-diffusion models by using asymmetric kernels, Stochastic Analysis and Applications, 2013, 31(6): 956–974.

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmisser E, Non-parametric adaptive estimation of the drift for a jump diffusion process, Stochastic Processes and Their Applications, 2014, 124(1): 883–914.

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmisser E, Non-parametric estimation of the diffusion coefficients of a diffusion with jumps, Stochastic Processes and Their Applications, 2019, 129(12): 5364–5405.

    Article  MathSciNet  MATH  Google Scholar 

  22. Favetto B, Parameter estimation by contrast minimization for noisy observations of a diffusion process, Statistics, 2014, 48(6): 1344–1370.

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmisser E, Non-parametric drift estimation for diffusions from noisy data, Statistics & Decisions, 2011, 28(2): 119–150.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee W, Greenwood P E, Heckman N, et al., Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise, Statistical Inference for Stochastic Processes, 2017, 20(2): 237–252.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye X G, Lin J G, and Zhao Y Y, A two-step estimation of diffusion processes using noisy observations, Journal of Nonparametric Statistics, 2018, 30(1): 145–181.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jing B Y, Liu Z, and Kong X B, On the estimation of integrated volatility with jumps and microstructure noise, Journal of Business & Economic Statistics, 2014, 32(3): 457–467.

    Article  MathSciNet  Google Scholar 

  27. Zhou B, High-frequency data and volatility in foreign-exchange rates, Journal of Business & Economic Statistics, 1996, 14(1): 45–52.

    Google Scholar 

  28. Jones C S, Nonlinear mean reversion in the short-term interest rate, Review of Financial Studies, 2003, 16(3): 793–843.

    Article  Google Scholar 

  29. Aït-Sahalia Y, Nonparametric pricing of interest rate derivative securities, Econometrica, 1996, 64(3): 527–560.

    Article  MATH  Google Scholar 

  30. Jacod J, Li Y, Mykland P A, et al., Microstructure noise in the continuous case: The pre-averaging approach, Stochastic Processes and Their Applications, 2009, 119(7): 2249–2276.

    Article  MathSciNet  MATH  Google Scholar 

  31. Durham G B, Likelihood-based specification analysis of continuous-time models of the short-term interest rate, Journal of Financial Economics, 2003, 70(3): 463–487.

    Article  Google Scholar 

  32. Bandi F M, Short-term interest rate dynamics: A spatial approach, Journal of Financial Economics, 2002, 65(1): 73–110.

    Article  Google Scholar 

  33. Hong Y and Li H, Nonparametric specification testing for continuous-time models with applications to term structure of interest rates, Review of Financial Studies, 2005, 18(1): 37–84.

    Article  Google Scholar 

  34. Hamilton J D, The daily market for federal funds, Journal of Political Economy, 1996, 104(1): 26–56.

    Article  Google Scholar 

  35. Florens-Zmirou D, On estimating the diffusion coefficient from discrete observations, Journal of Applied Probability, 1993, 30(4): 790–804.

    Article  MathSciNet  MATH  Google Scholar 

  36. Aït-Sahalia Y and Park J Y, Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models, Journal of Econometrics, 2016, 192(1): 119–138.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang H and Zhou L, Bandwidth selection of nonparametric threshold estimator in jump-diffusion models, Computers & Mathematics with Applications, 2017, 73(2): 211–219.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jacod J and Todorov V, Efficient estimation of integrated volatility in presence of infinite variation jumps, Annals of Statistics, 2014, 42(3): 1029–1069.

    MathSciNet  MATH  Google Scholar 

  39. Kong X, Liu Z, and Jing B, Testing for pure-jump processes for high-frequency data, Annals of Statistics, 2015, 43(2): 847–877.

    Article  MathSciNet  MATH  Google Scholar 

  40. Mancini C, Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scandinavian Journal of Statistics, 2009, 36(2): 270–296.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyong Zhao.

Additional information

Ye’s research is supported by the National Natural Science Foundation of China under Grant No. 11961038, Young Talents Project of Science and Technology Research Program of Education Department in Guizhou Province (Qianjiao KYword[2018]364), Science and Technology Foundation of Guizhou Province (QianKeHejichu[2019]1286), Cultivating Project of National Natural Science Foundation (QianKeHe talent-development platform[2017]No. 5723, QianKeHe talent-development platform[2017]No. 5723-02). Zhao’s research is supported by the National Natural Science Foundation of China under Grant Nos. 12071220, 11701286, Social Science Foundation of Jiangsu Province under Grant No. 20EYC008, the National Statistical Research Project of China under Grant No. 2020LZ35, and Open Project of Jiangsu Key Laboratory of Financial Engineering under Grant No. NSK2021-12. Lin’s research is supported by the National Natural Science Foundation of China under Grant Nos. 11831008, 11971235, and the National Statistical Research Project of China under Grant No. 2020LZ19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Zhao, Y., Lin, J. et al. Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data. J Syst Sci Complex 35, 2398–2429 (2022). https://doi.org/10.1007/s11424-022-1041-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-1041-8

Keywords

Navigation